希尔排序

1959 年一个叫Donald L. Shell (March 1, 1924 – November 2, 2015)的美国人在Communications of the ACM 国际计算机学会月刊发布了一个排序算法,从此名为希尔排序的算法诞生了。

注:ACM = Association for Computing Machinery,国际计算机学会,世界性的计算机从业员专业组织,创立于1947年,是世界上第一个科学性及教育性计算机学会。

希尔排序是直接插入排序的改进版本。因为直接插入排序对那些几乎已经排好序的数列来说,排序效率极高,达到了O(n)的线性复杂度,但是每次只能将数据移动一位。希尔排序创造性的可以将数据移动n位,然后将n一直缩小,缩到与直接插入排序一样为1,请看下列分析。

希尔排序属于插入类排序算法。

一、算法介绍

有一个N个数的数列:

  1. 先取一个小于N的整数d1,将位置是d1整数倍的数们分成一组,对这些数进行直接插入排序。
  2. 接着取一个小于d1的整数d2,将位置是d2整数倍的数们分成一组,对这些数进行直接插入排序。
  3. 接着取一个小于d2的整数d3,将位置是d3整数倍的数们分成一组,对这些数进行直接插入排序。
  4. ...
  5. 直到取到的整数d=1,接着使用直接插入排序。

这是一种分组插入方法,最后一次迭代就相当于是直接插入排序,其他迭代相当于每次移动n个距离的直接插入排序,这些整数是两个数之间的距离,我们称它们为增量。

我们取数列长度的一半为增量,以后每次减半,直到增量为1。

举个简单例子,希尔排序一个 12 个元素的数列:[5 9 1 6 8 14 6 49 25 4 6 3],增量d的取值依次为:6,3,1

x 表示不需要排序的数

取 d = 6 对 [5 x x x x x 6 x x x x x] 进行直接插入排序,没有变化。
取 d = 3 对 [5 x x 6 x x 6 x x 4 x x] 进行直接插入排序,排完序后:[4 x x 5 x x 6 x x 6 x x]。
取 d = 1 对 [4 9 1 5 8 14 6 49 25 6 6 3] 进行直接插入排序,因为 d=1 完全就是直接插入排序了。

越有序的数列,直接插入排序的效率越高,希尔排序通过分组使用直接插入排序,因为步长比1大,在一开始可以很快将无序的数列变得不那么无序,比较和交换的次数也减少,直到最后使用步长为1的直接插入排序,数列已经是相对有序了,所以时间复杂度会稍好一点。

在最好情况下,也就是数列是有序时,希尔排序需要进行logn次增量的直接插入排序,因为每次直接插入排序最佳时间复杂度都为:O(n),因此希尔排序的最佳时间复杂度为:O(nlogn)

在最坏情况下,每一次迭代都是最坏的,假设增量序列为:d8 d7 d6 ... d3 d2 1,那么每一轮直接插入排序的元素数量为:n/d8 n/d7 n/d6 .... n/d3 n/d2 n,那么时间复杂度按照直接插入的最坏复杂度来计算为:

假设增量序列为 ⌊N/2⌋ ,每次增量取值为比上一次的一半小的最大整数。

O( (n/d8)^2 + (n/d7)^2 + (n/d6)^2 + ... + (n/d2)^2 + n^2)

= O(1/d8^2 + 1/d7^2 + 1/d6^2 + ... + 1/d2^2 + 1) * O(n^2)
= O(等比为1/2的数列和) * O(n^2)
= O(等比求和公式) * O(n^2)
= O( (1-(1/2)^n)/(1-1/2) ) * O(n^2)
= O( (1-(1/2)^n)*2 ) * O(n^2)
= O( 2-2*(1/2)^n ) * O(n^2)
= O( < 2 ) * O(n^2)

所以,希尔排序最坏时间复杂度为O(n^2)

不同的分组增量序列,有不同的时间复杂度,但是没有人能够证明哪个序列是最好的。Hibbard增量序列:1,3,7,···,2n−1是被证明可广泛应用的分组序列,时间复杂度为:Θ(n^1.5)

希尔排序的时间复杂度大约在这个范围:O(n^1.3)~O(n^2),具体还无法用数学来严格证明它。

希尔排序不是稳定的,因为每一轮分组,都使用了直接插入排序,但分组会跨越n个位置,导致两个相同的数,发现不了对方而产生了顺序变化。

二、算法实现

package main

import "fmt"

// 增量序列折半的希尔排序
func ShellSort(list []int) {
// 数组长度
n := len(list) // 每次减半,直到步长为 1
for step := n / 2; step >= 1; step /= 2 {
// 开始插入排序,每一轮的步长为 step
for i := step; i < n; i += step {
for j := i - step; j >= 0; j -= step {
// 满足插入那么交换元素
if list[j+step] < list[j] {
list[j], list[j+step] = list[j+step], list[j]
continue
}
break
}
}
}
} func main() {
list := []int{5}
ShellSort(list)
fmt.Println(list) list1 := []int{5, 9}
ShellSort(list1)
fmt.Println(list1) list2 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3}
ShellSort(list2)
fmt.Println(list2) list3 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3, 2, 4, 23, 467, 85, 23, 567, 335, 677, 33, 56, 2, 5, 33, 6, 8, 3}
ShellSort(list3)
fmt.Println(list3)
}

输出:

[5]
[5 9]
[1 3 4 5 6 6 6 8 9 14 25 49]
[1 2 2 3 3 4 4 5 5 6 6 6 6 8 8 9 14 23 23 25 33 33 49 56 85 335 467 567 677]

按照之前分析的几种排序算法,一般建议待排序数组为小规模情况下使用直接插入排序,在规模中等的情况下可以使用希尔排序,但在大规模还是要使用快速排序,归并排序或堆排序。

系列文章入口

我是陈星星,欢迎阅读我亲自写的 数据结构和算法(Golang实现),文章首发于 阅读更友好的GitBook

数据结构和算法(Golang实现)(22)排序算法-希尔排序的更多相关文章

  1. 数据结构和算法(Golang实现)(26)查找算法-哈希表

    哈希表:散列查找 一.线性查找 我们要通过一个键key来查找相应的值value.有一种最简单的方式,就是将键值对存放在链表里,然后遍历链表来查找是否存在key,存在则更新键对应的值,不存在则将键值对链 ...

  2. 数据结构和算法(Golang实现)(27)查找算法-二叉查找树

    二叉查找树 二叉查找树,又叫二叉排序树,二叉搜索树,是一种有特定规则的二叉树,定义如下: 它是一颗二叉树,或者是空树. 左子树所有节点的值都小于它的根节点,右子树所有节点的值都大于它的根节点. 左右子 ...

  3. 数据结构和算法(Golang实现)(28)查找算法-AVL树

    AVL树 二叉查找树的树高度影响了查找的效率,需要尽量减小树的高度,AVL树正是这样的树. 一.AVL树介绍 AVL树是一棵严格自平衡的二叉查找树,1962年,发明者Adelson-Velsky和La ...

  4. 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树

    某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...

  5. 《Algorithm算法》笔记:元素排序(2)——希尔排序

    <Algorithm算法>笔记:元素排序(2)——希尔排序 Algorithm算法笔记元素排序2希尔排序 希尔排序思想 为什么是插入排序 h的确定方法 希尔排序的特点 代码 有关排序的介绍 ...

  6. 插入排序、冒泡排序、选择排序、希尔排序、高速排序、归并排序、堆排序和LST基数排序——C++实现

    首先是算法实现文件Sort.h.代码例如以下: <pre name="code" class="java">/* * 实现了八个经常使用的排序算法: ...

  7. 学习C#之旅 冒泡排序,选择排序,插入排序,希尔排序[资料收集]

    关于冒泡排序,选择排序,插入排序,希尔排序[资料收集]  以下资料来源与网络 冒泡排序:从后到前(或者从前到后)相邻的两个两两进行比较,不满足要求就位置进行交换,一轮下来选择出一个最小(或最大)的放到 ...

  8. 数据结构和算法(Golang实现)(30)查找算法-2-3-4树和普通红黑树

    文章首发于 阅读更友好的GitBook. 2-3-4树和普通红黑树 某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较 ...

  9. C语言中的排序算法--冒泡排序,选择排序,希尔排序

    冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没 ...

随机推荐

  1. css3系列-2.css中常见的样式属性和值

    css3系列-2.css中常见的样式属性和值 继续上一篇文章的继续了解css的基础知识,关注我微信公众号:全栈学习笔记 css中常见的样式属性和值 字体与颜色 背景属性 文本属性 边框属性 内外边距 ...

  2. docker:一文学基础使用

    目录 docker介绍 安装与镜像源配置 CentOS7 安装 设置镜像源 补充: 简单使用例子 基础概念 四个概念 镜像概念补充: 容器概念补充: 常用命令: 查看docker信息 镜像操作 容器操 ...

  3. Windows软件包管理工具 - Chocolatey

    概述 windows下的软件安装管理器(用于自动管理软件安装,更新,卸载) Chocolatey引入了真正的包管理概念,使您能够对事物进行版本控制,管理依赖关系和安装顺序,更好的库存管理以及其他功能 ...

  4. Postman-OAuth 2.0授权

    一.Postman提供的授权类型有10种.授权过程将验证是否有权从服务器访问所需的数据.发送请求时,通常必须包含参数以确保请求有权访问并返回所需的数据. 二.使用第7种OAuth 2.0授权:OAut ...

  5. 利用 MinIO 轻松搭建静态资源服务

    目录 1 引言 2 MinIO 简介 3 MinIO 运行与静态资源使用 3.1 MinIO 获取 3.2 MinIO 启动与运行 3.2.1 前台简单启动 3.2.2 后台指定参数运行 3.2.3 ...

  6. [vijos1048]送给圣诞夜的贺卡<DFS剪枝>

    题目链接:https://www.vijos.org/p/1048 很多人一看就想出了思路,不就是一个裸的dfs蛮...但是..在n<=50的情况下,朴素会直接tle..... 然后我就开始剪枝 ...

  7. 《JAVA与模式》之责任链模式 【转载】

    转载自java_my_life的博客 原文地址:http://www.cnblogs.com/java-my-life/archive/2012/05/28/2516865.html 在阎宏博士的&l ...

  8. AngularJS插件使用---angular-cookies.js

    首先在项目中引入angular-cookies.js angular模块中添加依赖:‘ngCookies’ 在控制器中依赖注入$cookies,使用$cookies操作cookie $cookiesP ...

  9. 一篇让你明白什么是浏览器BOM方法的笔记

    BOM Browser Object Model 浏览器对象模型 虚拟机 ,任何语言编辑的程序都需要一个虚拟机来执行.如果脱离这个环境就无法运行. 浏览器就是一种虚拟机.用来解析html语言 同一款浏 ...

  10. 200行PYTHON代码实现贪吃蛇

    200行Python代码实现贪吃蛇 话不多说,最后会给出全部的代码,也可以从这里Fork,正文开始: 目前实现的功能列表: 贪吃蛇的控制,通过上下左右方向键: 触碰到边缘.墙壁.自身则游戏结束: 接触 ...