希尔排序

1959 年一个叫Donald L. Shell (March 1, 1924 – November 2, 2015)的美国人在Communications of the ACM 国际计算机学会月刊发布了一个排序算法,从此名为希尔排序的算法诞生了。

注:ACM = Association for Computing Machinery,国际计算机学会,世界性的计算机从业员专业组织,创立于1947年,是世界上第一个科学性及教育性计算机学会。

希尔排序是直接插入排序的改进版本。因为直接插入排序对那些几乎已经排好序的数列来说,排序效率极高,达到了O(n)的线性复杂度,但是每次只能将数据移动一位。希尔排序创造性的可以将数据移动n位,然后将n一直缩小,缩到与直接插入排序一样为1,请看下列分析。

希尔排序属于插入类排序算法。

一、算法介绍

有一个N个数的数列:

  1. 先取一个小于N的整数d1,将位置是d1整数倍的数们分成一组,对这些数进行直接插入排序。
  2. 接着取一个小于d1的整数d2,将位置是d2整数倍的数们分成一组,对这些数进行直接插入排序。
  3. 接着取一个小于d2的整数d3,将位置是d3整数倍的数们分成一组,对这些数进行直接插入排序。
  4. ...
  5. 直到取到的整数d=1,接着使用直接插入排序。

这是一种分组插入方法,最后一次迭代就相当于是直接插入排序,其他迭代相当于每次移动n个距离的直接插入排序,这些整数是两个数之间的距离,我们称它们为增量。

我们取数列长度的一半为增量,以后每次减半,直到增量为1。

举个简单例子,希尔排序一个 12 个元素的数列:[5 9 1 6 8 14 6 49 25 4 6 3],增量d的取值依次为:6,3,1

x 表示不需要排序的数

取 d = 6 对 [5 x x x x x 6 x x x x x] 进行直接插入排序,没有变化。
取 d = 3 对 [5 x x 6 x x 6 x x 4 x x] 进行直接插入排序,排完序后:[4 x x 5 x x 6 x x 6 x x]。
取 d = 1 对 [4 9 1 5 8 14 6 49 25 6 6 3] 进行直接插入排序,因为 d=1 完全就是直接插入排序了。

越有序的数列,直接插入排序的效率越高,希尔排序通过分组使用直接插入排序,因为步长比1大,在一开始可以很快将无序的数列变得不那么无序,比较和交换的次数也减少,直到最后使用步长为1的直接插入排序,数列已经是相对有序了,所以时间复杂度会稍好一点。

在最好情况下,也就是数列是有序时,希尔排序需要进行logn次增量的直接插入排序,因为每次直接插入排序最佳时间复杂度都为:O(n),因此希尔排序的最佳时间复杂度为:O(nlogn)

在最坏情况下,每一次迭代都是最坏的,假设增量序列为:d8 d7 d6 ... d3 d2 1,那么每一轮直接插入排序的元素数量为:n/d8 n/d7 n/d6 .... n/d3 n/d2 n,那么时间复杂度按照直接插入的最坏复杂度来计算为:

假设增量序列为 ⌊N/2⌋ ,每次增量取值为比上一次的一半小的最大整数。

O( (n/d8)^2 + (n/d7)^2 + (n/d6)^2 + ... + (n/d2)^2 + n^2)

= O(1/d8^2 + 1/d7^2 + 1/d6^2 + ... + 1/d2^2 + 1) * O(n^2)
= O(等比为1/2的数列和) * O(n^2)
= O(等比求和公式) * O(n^2)
= O( (1-(1/2)^n)/(1-1/2) ) * O(n^2)
= O( (1-(1/2)^n)*2 ) * O(n^2)
= O( 2-2*(1/2)^n ) * O(n^2)
= O( < 2 ) * O(n^2)

所以,希尔排序最坏时间复杂度为O(n^2)

不同的分组增量序列,有不同的时间复杂度,但是没有人能够证明哪个序列是最好的。Hibbard增量序列:1,3,7,···,2n−1是被证明可广泛应用的分组序列,时间复杂度为:Θ(n^1.5)

希尔排序的时间复杂度大约在这个范围:O(n^1.3)~O(n^2),具体还无法用数学来严格证明它。

希尔排序不是稳定的,因为每一轮分组,都使用了直接插入排序,但分组会跨越n个位置,导致两个相同的数,发现不了对方而产生了顺序变化。

二、算法实现

package main

import "fmt"

// 增量序列折半的希尔排序
func ShellSort(list []int) {
// 数组长度
n := len(list) // 每次减半,直到步长为 1
for step := n / 2; step >= 1; step /= 2 {
// 开始插入排序,每一轮的步长为 step
for i := step; i < n; i += step {
for j := i - step; j >= 0; j -= step {
// 满足插入那么交换元素
if list[j+step] < list[j] {
list[j], list[j+step] = list[j+step], list[j]
continue
}
break
}
}
}
} func main() {
list := []int{5}
ShellSort(list)
fmt.Println(list) list1 := []int{5, 9}
ShellSort(list1)
fmt.Println(list1) list2 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3}
ShellSort(list2)
fmt.Println(list2) list3 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3, 2, 4, 23, 467, 85, 23, 567, 335, 677, 33, 56, 2, 5, 33, 6, 8, 3}
ShellSort(list3)
fmt.Println(list3)
}

输出:

[5]
[5 9]
[1 3 4 5 6 6 6 8 9 14 25 49]
[1 2 2 3 3 4 4 5 5 6 6 6 6 8 8 9 14 23 23 25 33 33 49 56 85 335 467 567 677]

按照之前分析的几种排序算法,一般建议待排序数组为小规模情况下使用直接插入排序,在规模中等的情况下可以使用希尔排序,但在大规模还是要使用快速排序,归并排序或堆排序。

系列文章入口

我是陈星星,欢迎阅读我亲自写的 数据结构和算法(Golang实现),文章首发于 阅读更友好的GitBook

数据结构和算法(Golang实现)(22)排序算法-希尔排序的更多相关文章

  1. 数据结构和算法(Golang实现)(26)查找算法-哈希表

    哈希表:散列查找 一.线性查找 我们要通过一个键key来查找相应的值value.有一种最简单的方式,就是将键值对存放在链表里,然后遍历链表来查找是否存在key,存在则更新键对应的值,不存在则将键值对链 ...

  2. 数据结构和算法(Golang实现)(27)查找算法-二叉查找树

    二叉查找树 二叉查找树,又叫二叉排序树,二叉搜索树,是一种有特定规则的二叉树,定义如下: 它是一颗二叉树,或者是空树. 左子树所有节点的值都小于它的根节点,右子树所有节点的值都大于它的根节点. 左右子 ...

  3. 数据结构和算法(Golang实现)(28)查找算法-AVL树

    AVL树 二叉查找树的树高度影响了查找的效率,需要尽量减小树的高度,AVL树正是这样的树. 一.AVL树介绍 AVL树是一棵严格自平衡的二叉查找树,1962年,发明者Adelson-Velsky和La ...

  4. 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树

    某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...

  5. 《Algorithm算法》笔记:元素排序(2)——希尔排序

    <Algorithm算法>笔记:元素排序(2)——希尔排序 Algorithm算法笔记元素排序2希尔排序 希尔排序思想 为什么是插入排序 h的确定方法 希尔排序的特点 代码 有关排序的介绍 ...

  6. 插入排序、冒泡排序、选择排序、希尔排序、高速排序、归并排序、堆排序和LST基数排序——C++实现

    首先是算法实现文件Sort.h.代码例如以下: <pre name="code" class="java">/* * 实现了八个经常使用的排序算法: ...

  7. 学习C#之旅 冒泡排序,选择排序,插入排序,希尔排序[资料收集]

    关于冒泡排序,选择排序,插入排序,希尔排序[资料收集]  以下资料来源与网络 冒泡排序:从后到前(或者从前到后)相邻的两个两两进行比较,不满足要求就位置进行交换,一轮下来选择出一个最小(或最大)的放到 ...

  8. 数据结构和算法(Golang实现)(30)查找算法-2-3-4树和普通红黑树

    文章首发于 阅读更友好的GitBook. 2-3-4树和普通红黑树 某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较 ...

  9. C语言中的排序算法--冒泡排序,选择排序,希尔排序

    冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没 ...

随机推荐

  1. Linux常用命令 - top命令详解(重点)

    21篇测试必备的Linux常用命令,每天敲一篇,每次敲三遍,每月一循环,全都可记住!! https://www.cnblogs.com/poloyy/category/1672457.html top ...

  2. MySQL 【进阶查询】

    数据类型介绍 整型 tinyint, # 占1字节,有符号:-128~127,无符号位:0~255 smallint, # 占2字节,有符号:-32768~32767,无符号位:0~65535 med ...

  3. axios Api介绍

    1.Performing a GET request axios.get('/user?ID=12345') .then(function (response) { // handle success ...

  4. python的进制转换

    转载于:https://www.cnblogs.com/FWF1944/p/11132409.html(方法论190404) Python整数能够以十六进制,八进制和二进制来编写,作为一般以10位基数 ...

  5. Django之模板层细说

    django的模板层,基于我们前面学习的内容,也知道主要语法是{{变量相关}}{%逻辑相关%},那么具体还有哪些内容呢?且听我娓娓道来. 模板层(模板语法) 标签 过滤器 自定义标签,过滤器,incl ...

  6. ASP.NET Core Authentication and Authorization

    最近把一个Asp .net core 2.0的项目迁移到Asp .net core 3.1,项目启动的时候直接报错: InvalidOperationException: Endpoint CoreA ...

  7. 超越Mask-RCNN:谷歌大脑的AI,自己写了个目标检测AI

    这是一只AI生出的小AI. 谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型.长这样: △ 看不清请把手机横过来 它的准确率和速度都超过了大前辈Mask-RCNN ...

  8. BUAA_2020_OO_第一单元总结

    三次作业,三次成长 第一次作业--幂函数求导总结 作业思路和心得 第一次作业的要求只有x的指数这样的幂函数加减组成表达式,对表达式进行求导,而且没有格式错误的检查,所以难度感觉还不是很高.不过由于我寒 ...

  9. 4 Values whose Sum is 0 POJ - 2785(二分应用)

    题意:输入一个数字n,代表有n行a,b,c,d,求a+b+c+d=0有多少组情况. 思路:先求出前两个数字的所有情况,装在一个数组里面,再去求后两个数字的时候二分查找第一个大于等于这个数的位置和第一个 ...

  10. JVM 调优工具

    JMeter  LoadRunner  压力测试工具 JConsole  是一个内置 Java 性能分析器,可以查看内存,线程,类,CPU 等的使用情况,可以通过线程去查看线程的试用情况,死锁可以被检 ...