[题解] LuoguP2257 YY的GCD
给\(n,m\),让你求
\]
有\(T\)组询问\((T \le 10^4,n,m\le 10^7)\)。
枚举质数\(p\),然后柿子变成
\]
等价于
\]
因为把\(\left\lfloor n/p \right\rfloor,\left\lfloor m/p\right\rfloor\)以内互质的一对数乘上\(p\)就是\(\gcd=p\)的数了。
令\(S(n,m)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m [\gcd(i,j)=1]\),由于\(\mu\)的性质\([n=1]=\sum\limits_{d\mid n} \mu(d)\),所以
\]
又因为\(\left\lfloor\frac{\left\lfloor\frac{n}{p}\right\rfloor}{d}\right\rfloor=\left\lfloor\frac{n}{dp}\right\rfloor\),所以柿子是
\]
可以枚举\(k=dp\),有
\]
令\(f(n)=\sum\limits_{p\mid n} \mu(\frac{n}{p})\),预处理出\(f\)的前缀和,数论分块就好了。
并不会算预处理的复杂度qwq...
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for (int i=(a);i<(b);++i)
#define per(i,a,b) for (int i=(a)-1;i>=(b);--i)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
typedef double db;
typedef long long ll;
typedef pair<int,int> PII;
typedef vector<int> VI;
const int maxn=1e7,N=maxn+10;
int vis[N],p[N],pn,mu[N],sum[N];
#define ss(l,r) (sum[r]-sum[l-1])
void init(int n) {
mu[1]=1;
rep(i,2,n+1) {
if(!vis[i]) {p[pn++]=i;mu[i]=-1;}
for(int j=0;j<pn&&i*p[j]<=n;j++) {
vis[i*p[j]]=1;
if(i%p[j]==0) {mu[i*p[j]]=0;break;}
else mu[i*p[j]]=-mu[i];
}
}
rep(i,0,pn) for(int j=p[i];j<=n;j+=p[i])
sum[j]+=mu[j/p[i]];
rep(i,1,n+1) sum[i]+=sum[i-1];
}
ll solve(int n,int m) {
int tn=min(n,m); ll ans=0;
for(int l=1,r=0;l<=tn;l=r+1) {
r=min(n/(n/l),m/(m/l));
ans+=1ll*(n/l)*(m/l)*ss(l,r);
}
return ans;
}
int main() {
#ifdef LOCAL
freopen("a.in","r",stdin);
#endif
init(maxn);
int _,n,m;for(scanf("%d",&_);_;_--) {
scanf("%d%d",&n,&m);
printf("%lld\n",solve(n,m));
}
return 0;
}
[题解] LuoguP2257 YY的GCD的更多相关文章
- 题解 P2257 YY的GCD
P2257 YY的GCD 解题思路 果然数论的题是真心不好搞. 第一个莫比乌斯反演的题,好好推一下式子吧..(借鉴了blog) 我们要求的答案就是\(Ans=\sum\limits_{i=1}^{n} ...
- LuoguP2257 YY的GCD
题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻×必然不会了,于 ...
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- 【LG2257】YY的GCD
[LG2257]YY的GCD 题面 洛谷 题解 题目大意: 给定\(n,m\)求\(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)为质数]\). 我们设\(f(x)=[x为 ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- 【BZOJ】【2820】YY的GCD
莫比乌斯反演 PoPoQQQ讲义第二题. 暴力枚举每个质数,然后去更新它的倍数即可,那个g[x]看不懂就算了…… 为什么去掉了一个memset就不T了→_→…… /****************** ...
随机推荐
- FTP虚拟账户
部署一个内网FTP服务器 为了解决公司员工文件存储和下载的需求.要求部署内部FTP服务器,员工可以通过自己的账号的权限对FTP进行操作. 1)公司公共文件可以通过匿名下载 2)公司财务部.商务部.行政 ...
- Controller 层类
package com.thinkgem.jeesite.modules.yudengji.web; import java.util.Date; import javax.servlet.http. ...
- Systemverilog for design 笔记(七)
转载请标明出处 第一章 接口(interface) 1.1. 接口的概念 接口允许许多信号合成一组由一个端口表示. 1.2. 接口声明 //接口定义 Interface main_bus ...
- Java - 使用hibernate配置文件 + JPA annotation注解操作数据库
本程序运行环境:IDEA. 实际上我对hiberbate与注解的关系还不是太清晰.据我所知注解都是Java JPA的,那么我的理解是:hibernate就应该只是通过这些JPA标识及hibernate ...
- table左边固定-底部横向滚动条-demo
图: 代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www. ...
- Jmeter JDBC配置
前提条件,驱动包mysql-connector-java-5.1.38-bin.jar要放到本机Java路径:C:\Program Files\Java\jdk1.8.0_73\jre\lib\ext ...
- “嘭、嘭、嘭”---C/S架构下的心跳机制
本人想使用AU3开发多客户端.一服务端.需要使用到心跳机制,即 在线状态实时更新以及掉线自动重连. 搜索网络发现没有人用AU3写心跳机制. 下面是一篇转帖(原文地址:http://www.cnblog ...
- C# 中的委托和事件 转载张子阳的
C# 中的委托和事件 引言 委托 和 事件在 .Net Framework中的应用非常广泛,然而,较好地理解委托和事件对很多接触C#时间不长的人来说并不容易.它们就像是一道槛儿,过了这个槛的人 ...
- 【FastDev4Android框架开发】RecyclerView完全解析之下拉刷新与上拉加载SwipeRefreshLayout(三十一)
转载请标明出处: http://blog.csdn.net/developer_jiangqq/article/details/49992269 本文出自:[江清清的博客] (一).前言: [好消息] ...
- Day9 - G - Doing Homework HDU - 1074
有n个任务,每个任务有一个截止时间,超过截止时间一天,要扣一个分.求如何安排任务,使得扣的分数最少.Input有多组测试数据.第一行一个整数表示测试数据的组数第一行一个整数n(1<=n<= ...