牛顿迭代法--求任意数的开n次方
牛顿迭代法是求开n次方近似解的一种方法,本文参考。
引言
假如\(x^n = m\),我们需要求x的近似值。
- 我们设\(f(x) = x^n - m\), 那么也就是求该函数f(x)=0时与x轴的交点的值,也就是f(x)=0时方程的根。
算法介绍
感觉和物理做实验一样,先通过实验观察,再找出对应理论来解释现象。
这个算法不是推导出来的,是首先通过观察发现,再来证明推导,哈哈哈~
以下结论都是建立在f(x)二阶可导的情况下成立。
牛顿发现随便找一个曲线上的A点(为什么随便找,根据切线是切点附近的曲线的近似,应该在根点附近找,但是很显然我们现在还不知道根点在哪里),做一个切线,切线的根(就是和x轴的交点)与曲线的根,还有一定的距离。牛顿、拉弗森们想,没关系,我们从这个切线的根出发,做一根垂线,和曲线相交于B点,继续重复刚才的工作:
之前说过,B点比之前A点更接近曲线的根点,牛顿、拉弗森们很兴奋,继续重复刚才的工作:
经过多次迭代后会越来越接近曲线的根(下图进行了50次迭代,哪怕经过无数次迭代也只会更接近曲线的根,用数学术语来说就是,迭代收敛了):
总结
已知曲线方程\(f(x) = x^n - m\),我们随机取一点\(x_1\):
- \(x_1\)处切线方程为:\(y - f(x_1) = f^{'}(x_1)(x - x_1)\),此方程与x轴的交点为\(x_2\)为:
- \(x_2 = x_1 - \frac{f(x_1)}{f^{'}(x_1)} = x_1 - \frac{x_1^n - m}{nx_1^{n-1}}\)
- 一直到\(x_{N+1} = x_N - \frac{x_N^n - m}{nx_N^{n-1}}\),从而近似求解开n次方。
算法实现(go)
这是go tutorial里的一个练习,求开方。求开n次方同理。只需要改成z = z - (Pow(z,n) - m)/(n*Pow(z,(n-1)))
就行了。
注意这里的z = (z + x/z)/2
也就是\(z = \frac{z^2+x}{2z}\)也等于我们这里当\(n=2\)时,\(z - \frac{z^2-x}{2z}\),在代码里也就是反复更新迭代z的值,缩小误差。
package main
import (
"fmt"
"math"
)
func Sqrt(x float64) float64 {
z := float64(1)
tmp := float64(0)
for math.Abs(tmp - z) > 0.0000000001 {
tmp = z
z = (z + x/z)/2
}
return z
}
func main() {
fmt.Println(Sqrt(2))
fmt.Println(math.Sqrt(2))
}
牛顿迭代法--求任意数的开n次方的更多相关文章
- 141. Sqrt(x)【牛顿迭代法求平方根 by java】
Description Implement int sqrt(int x). Compute and return the square root of x. Example sqrt(3) = 1 ...
- C语言之基本算法11—牛顿迭代法求平方根
//迭代法 /* ================================================================== 题目:牛顿迭代法求a的平方根!迭代公式:Xn+1 ...
- 数学相关比较 牛顿迭代法求开方 很多个n的平方分之一
牛顿迭代法求开方 牛顿迭代法 作用: 求f(x) = 0 的解 方法:假设任意一点 x0, 求切线与x轴交点坐标x1, 再求切线与x轴交点坐标x2,一直重复,直到f(xn) 与0的差距在一个极小的范围 ...
- 【清橙A1094】【牛顿迭代法】牛顿迭代法求方程的根
问题描述 给定三次函数f(x)=ax3+bx2+cx+d的4个系数a,b,c,d,以及一个数z,请用牛顿迭代法求出函数f(x)=0在z附近的根,并给出迭代所需要次数. 牛顿迭代法的原理如下(参考下图) ...
- YTU 2405: C语言习题 牛顿迭代法求根
2405: C语言习题 牛顿迭代法求根 时间限制: 1 Sec 内存限制: 128 MB 提交: 562 解决: 317 题目描述 用牛顿迭代法求根.方程为ax3+bx2+cx+d=0.系数a,b ...
- 【Java例题】4.4使用牛顿迭代法求方程的解
4. 使用牛顿迭代法求方程的解:x^3-2x-5=0区间为[2,3]这里的"^"表示乘方. package chapter4; public class demo4 { publi ...
- 牛顿迭代法求n方根
一.简单推导 二.使用 借助上述公式,理论上可以求任意次方根,假设要求a(假设非负)的n次方根,则有xn=a,令f(x)=xn-a,则只需求f(x)=0时x的值即可.由上述简单推导知,当f(x)=0时 ...
- C语言之基本算法25—牛顿迭代法求方程近似根
//牛顿迭代法! /* ============================================================ 题目:用牛顿迭代法求解3*x*x*x-2*x*x-16 ...
- 牛顿迭代法求开根号。 a^1/2_______Xn+1=1/2*(Xn+a/Xn)
#include <stdio.h>#include <math.h>int main(void){ double a,x1=1.0,x2; printf("plea ...
随机推荐
- Java - 闭包
概述 简单介绍 闭包 1. 聚合关系 概述 常见的 类间关系 场景 类 A 主要类 持有 类B 的实例 有点行为, 需要 类 B 的介入 类 B 有自己的行为 A 会在某些时候调用 B 的行为 代码示 ...
- Hello 2020D(多重集)
如果有一对时间对在某一场馆有时间重合而这一对时间对在另一场馆没有时间重合,则输出NO,否则输出YES. #define HAVE_STRUCT_TIMESPEC #include<bits/st ...
- 数据提取之JSON与JsonPATH
数据提取之JSON与JsonPATH JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.适 ...
- nginx配置 yii2 URL重写规则 SSI配置使shtml
location / { // 加上红色部分 重写url try_files $uri $uri/ /index.php?$args; if (!-e $request_filename){ rewr ...
- AxureRP 9安装、激活、汉化
AxureRP安装 AxureRP激活 AxureRP汉化
- Laravel 解决在ajax 请求下不能保存session的问题
Laravel 解决在ajax 请求下不能保存session的问题 \Session::put('isLogin',true); // 你要保存的session key \Session::put(' ...
- Flume基础学习
Flume是一款非常优秀的日志采集工具.支持多种形式的日志采集,作为apache的顶级开源项目,Flume再大数据方面具有广泛的应用 首先需要在Flume的解压目录中conf文件夹中将flume-en ...
- source insight 编译后出现停止工作解决方法
解决方法: 工程的路径不要有中文,都用英文
- LeetCode日常小习题
LeetCode练习题: 1.给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在众数. 示例 1: 输入 ...
- ES6-三点运算符
首先理解一下函数总的arguments变量,这个变量是函数内部自动生成的,他用来保存传入函数的实参,是一个伪数组. 例: function fun(a,b){ console.log(argument ...