deeplearning.ai 神经网络和深度学习 week2 神经网络基础
1. Logistic回归是用于二分分类的算法。
对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X。这个矩阵是nx*m大小,nx是每个样本的特征数量,m是样本个数,X.shape=(nx,m)。也可以把特征写成横向量然后竖着拼成m*n的矩阵,NG说前一种列向量的表示方便运算。输出Y是1*m的向量,Y.shape=(1,m)。
把样本表示成矩阵形式后,可以对它进行线性操作wTx+b,由于二分分类的标签为0或1,所以需要把线性变换的值变换到[0, 1]之间,即y_hat = σ(wTx+b),这里σ(z)=1/(1+e-z)就是sigmoid函数。
Loss (error) function描述了预测的输出y_hat和真实的标签y有多接近。误差平方是个很符合直觉的选择,但是不方便梯度下降法求解。在logistic回归中使用的loss funciton是L(y_hat, y) = -( ylog(y_hat) + (1-y)log(1-y_hat) ). 直观地说为什么这个loss function合理呢?如果y=1,L(y_hat ,y)=-ylog(y_hat),L越小越好,所以y_hat越大越好,又因为输出在[0, 1]区间,所以y_hat会趋向于1;如果y=0, L=-log(1-y_hat), y_hat会趋向于0。更深层次的说,这里的loss function描述的是概率的log,而如果每个样本都是独立同分布的,则整体的概率是每个样本概率的累乘,取log之后就是累加。
Loss function描述了单个样本的损失,Cost function描述了在整个样本空间的损失,J(w, b)是所有样本的loss function的平均值。这种方式构造的cost funciton是凸函数,使得优化问题是一个凸优化问题。
Logistic回归可以被看作是非常小的神经网络。
2. 神经网络的计算过程分为前向传播和反向传播,前向传播是计算神经网络的输出,反向传播是计算对应的梯度。
可以用计算图把复杂计算过程拆分成简单计算的堆叠。
在Logistic回归的例子中,算法使用了2个嵌套的for循环,外层for循环遍历所有的样本,内层for循环遍历单个样本内所有的特征。这样做的缺点是for循环效率低,特别是当数据量越来越大的情况下。所以就要使用向量化技术摆脱for循环。
3. 向量化。为计算 z=wTx+b,w和x都是n*1的向量,python中 z=np.dot(w,x)+b 会比for循环快很多(NG随便跑了个例子就相差300倍的耗时)。这是因为这种内置的dot运算更好地利用了并行化计算SIMD(Single Instruction Multiple Data)。相比于CPU,GPU更擅长SIMD。所以只要有可能,就避免使用for循环。
4. python中的broadcasting机制:做加减乘除等运算的时候,自动会把标量,或者小矩阵,扩展成和大矩阵一样的大小,然后元素对元素的运算。这个机制有好有坏,好处是方便,坏处是易错。
一些建议:
1)不推荐使用 a = np.random.randn(5),得到的a是秩为1的数组,a.shape = (5, ),这种数组和行向量、列向量都不一样。
推荐使用 a = np.random.randn(5, 1),这是指明a为列向量,a.shape = (5, 1)。
2)如果不确定矩阵的形状,可以用 assert( a.shape == (5, 1) )。
3)为保险都可以使用 a = a.reshape(5, 1),reshape的计算很快,所以不用担心耗时。
deeplearning.ai 神经网络和深度学习 week2 神经网络基础的更多相关文章
- deeplearning.ai 神经网络和深度学习 week2 神经网络基础 听课笔记
1. Logistic回归是用于二分分类的算法. 对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X.这个矩 ...
- Deeplearning.ai课程笔记-神经网络和深度学习
神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数 ...
- 针对深度学习(神经网络)的AI框架调研
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU). ...
- (转)神经网络和深度学习简史(第一部分):从感知机到BP算法
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...
- [DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈
觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中 ...
- 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】
[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [ ]AI为我们的家庭和办公室的个人设备供电 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...
- 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第二周测验【中英】
[中英][吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第二周测验 第2周测验 - 神经网络基础 神经元节点计算什么? [ ]神经元节点先计算激活函数,再计算线性函数(z = Wx + ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...
随机推荐
- Java 继承(extends)、抽象类(abstract)的特点用法原理(7)
Java 中的继承 继承: java中的抽象类用法原理: /* 当多个类中出现相同功能,但是功能主体不同, 这是可以进行向上抽取.这时,只抽取功能定义,而不抽取功能主体. 抽象:看不懂. 抽象类的特 ...
- 业内首发 | 区块链数据服务 - BDS
区块链数据服务(Blockchain Data Service,BDS)是京东云区块链产品部发推出的,其将区块链的链式.非结构化数据通过技术手段进行结构化存储,实时同步到高性能数据仓库中. 用户可以通 ...
- 201512-1 数位之和 Java
思路: mod 10获取最低位,除以10去掉最低位 import java.util.Scanner; public class Main { public static void main(Stri ...
- 数据分析-Matplotlib:绘图和可视化
学习路线 简介 简单绘制线形图 plot函数 支持图类型 保存图表 1.简介 Matplotlib是一个强大的Python绘图和数据可视化的工具包.数据可视化也是我们数据分析的最重要的工作之一,可以帮 ...
- Python opencv计算批量图片的BGR各自的均值
#coding:utf-8 #第一种方式 很慢很慢 自己写的如何计算均值 ''' import cv2 import os def access_pixels(frame): print(frame. ...
- nm命令介绍
一.参考文章 网址1:https://linuxtools-rst.readthedocs.io/zh_CN/latest/tool/nm.html 参考2: man nm 参考3:<linux ...
- beta函数分布图
set.seed(1) x<-seq(-5,5,length.out=10000) a = c(.5,0.6, 0.7, 0.8, 0.9) b = c(.5, 1, 1, 2, 5) colo ...
- 容斥原理的(二进制思想和质因子分解+模板)hdu4135+ecf81.D
题:http://acm.hdu.edu.cn/showproblem.php?pid=4135 题意:求[A,B]与N互质的数的个数 #include<iostream> #includ ...
- python与mysql部分函数和控制流语法对比
条件语句 python语法 a=int(input("输入一个数[0,100]成绩:")) if 100>=a>=90: print("优") el ...
- js几个常用的弹层
js弹层技术很常见,自己每次用上网找,一找一大堆. 对比了几种,考虑通用性和易用性,这里记录两个. jQueryUI的http://jqueryui.com/dialog/#modal-form ar ...