数据结构-ST表
数据结构-ST表
前置知识:倍增。
参考资料
暂无
是最简单的能解决 \(\texttt{RMQ}\) 问题的数据结构。特性有不可修改,在线查询。实现方式是倍增。它能求任意区间 \([l,r]\) 的最值,不适用于求和,如果要静态求和请用前缀和数组。
预处理构造
用一个数组 \(f_{i,j}\) 表示 \(i\sim i+2^j-1\) 这段的 \(\texttt{RMQ}\) 值。通过 \(f_{i,j-1}\) 和 \(f_{i+2^{j-1},j-1}\) 来递推 \(f_{i,j}\)。
静态查询
查询区间 \([l,r]\) 的 \(\texttt{RMQ}\) 值时,取 \(k=\lfloor\log_2(r-l+1)\rfloor\),答案可以由 \(f_{l,k}\) 和 \(f_{r-2^k+1,k}\) 推出。
时间复杂度和空间复杂度均为 \(\Theta(n\log n)\)。
code
const int N=1e5+10;
struct ST{
int f[N][20];
void build(int n,int*a){
for(int i=1;i<=n;i++) f[i][0]=a[i];
for(int j=1;j<=18;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
int fmax(int l,int r){ //l~r最大值
int k=log2(r-l+1);
return max(f[l][k],f[r-(1<<k)+1][k]);
}
}st;
祝大家学习愉快!
数据结构-ST表的更多相关文章
- 模板 - 数据结构 - ST表/SparseTable
SparseTable,俗称ST表,其功能,就是静态的RMQ(区间最值查询)问题的解决.注意传入查询的时候两个参数的合法性,或者可以进行一次全部初始化来使得越界值不产生负面影响.不过访问越界是写程序的 ...
- 区间最值的优秀数据结构---ST表
ST表,听起来高大上,实际上限制非常多,仅仅可以求最值问题: 为什么?先从原理看起: st表运用了倍增的思想:st[i][j] = min(st[i][j - 1],st[i + 2^(j - 1)) ...
- 模板 - 数据结构 - ST表 + 二维ST表
区间最大值,$O(nlogn)$ 预处理,$O(1)$ 查询,不能动态修改.在查询次数M显著大于元素数量N的时候看得出差距. 令 $f[i][j]$ 表示 $[i,i+2^j-1]$ 的最大值. 显然 ...
- COJ 1003 WZJ的数据结构(三)ST表
WZJ的数据结构(三) 难度级别:B: 运行时间限制:3000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 请你设计一个数据结构,完成以下功能: 给定一个大小为N的 ...
- 数据结构进阶:ST表
简介 ST 表是用于解决 可重复贡献问题 的数据结构. 什么是可重复贡献问题? 可重复贡献问题 是指对于运算 \(\operatorname{opt}\) ,满足 \(x\operatorname ...
- [数据结构与算法-13]ST表
ST表 主要用来快速查询静态数据区间最大值 思路 数组\(A[i][j]\)存储数列\(\{a_i\}\)中区间\(i \in [i, i+2^j)\)的最大值 查询时只需要查询\(max\{A[i] ...
- RMQ求解->ST表
ST表 这是一种神奇的数据结构,用nlogn的空间与nlongn的预处理得出O(1)的区间最大最小值(无修) 那么来看看这个核心数组:ST[][] ST[i][j]表示从i到i+(1<<j ...
- 【笔记】自学ST表笔记
自学ST表笔记 说实话原先QBXT学的ST表忘的差不多了吧...... 我重新自学巩固一下(回忆一下) 顺便把原先一些思想来源的原博发上来 一.ST表简介 ST表,建表时间\(O(n\cdot log ...
- BZOJ 4569 [Scoi2016]萌萌哒 | ST表 并查集
传送门 BZOJ 4569 题解 ST表和并查集是我认为最优雅(其实是最好写--)的两个数据结构. 然鹅!他俩加一起的这道题,我却--没有做出来-- 咳咳. 正解是这样的: 类似ST表有\(\log ...
随机推荐
- day15-接口类
# 一.接口类的作用是规范它的子类,跟后面学习的接口没关系. from abc import abstractmethod,ABCMeta class Pay(metaclass=ABCMeta): ...
- supervisor安装与配置实践版
应用场景 系统:centos7 需求:监控一个swooleWebSocket.php文件,程序使用的是8080端口,挂了自动被supervisor拉起来 一.首先要安装supervisor软件 yum ...
- centos7 部署vue项目(前后端分离、nginx)
一.环境准备 1.centos7系统 2.mysql数据库 3.在centos7虚拟机上安装好nginx 二.部署内容准备 1.后端war包 或者可执行jar 因为我这里是spring boot项目. ...
- TCP与UDP 笔记
本文整理自:<图解TCP/IP 第5版>作者:[日] 竹下隆史,[日] 村山公保,[日] 荒井透,[日] 苅田幸雄 著译者:乌尼日其其格出版时间:2013-07 TCP提供可靠的通信传输, ...
- 吴裕雄--天生自然python学习笔记:pandas模块删除 DataFrame 数据
Pandas 通过 drop 函数删除 DataFrarne 数据,语法为: 例如,删除陈聪明(行标题)的成绩: import pandas as pd datas = [[65,92,78,83,7 ...
- 最大流/最小割模板(isap) POJ1273
isap模板核心代码: //d[]为距离标号数组,d[i]表示节点i到汇点的距离 //gap[]为GAP优化数组,gap[i]表示到汇点距离为i的节点个数 int dfs(int k,int flow ...
- 关于RFC
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/byxdaz/article/details/557902关于RFC(Request For Comm ...
- yield解析
1.yield可以用来为一个函数返回值塞数据 代码: def addlist(alist): for i in alist: alist = [, , , ] for x in addlist(ali ...
- NIO详解
目录 NIO 前言 IO与NIO的区别 Buffer(缓冲区) Channel(通道) Charset(字符集) NIO遍历文件 NIO 前言 NIO即New IO,这个库是在JDK1.4中才引入的. ...
- 详解JavaScript Document对象
转自:http://segmentfault.com/a/1190000000660947 在浏览器中,与用户进行数据交换都是通过客户端的javascript代码来实现的,而完成这些交互工作大多数是d ...