OpenCV-Python 轮廓特征 | 二十二
目标
在本文中,我们将学习
- 如何找到轮廓的不同特征,例如面积,周长,质心,边界框等。
- 您将看到大量与轮廓有关的功能。
1. 特征矩
特征矩可以帮助您计算一些特征,例如物体的质心,物体的面积等。请查看特征矩上的维基百科页面。函数cv.moments()提供了所有计算出的矩值的字典。见下文:
import numpy as np
import cv2 as cv
img = cv.imread('star.jpg',0)
ret,thresh = cv.threshold(img,127,255,0)
contours,hierarchy = cv.findContours(thresh, 1, 2)
cnt = contours[0]
M = cv.moments(cnt)
print( M )
从这一刻起,您可以提取有用的数据,例如面积,质心等。质心由关系给出,Cx=M10M00C_x = \frac{M_{10}}{M_{00}}Cx=M00M10 和 Cy=M01M00C_y = \frac{M_{01}}{M_{00}}Cy=M00M01。可以按照以下步骤进行:
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
2. 轮廓面积
轮廓区域由函数cv.contourArea()或从矩M['m00']
中给出。
area = cv.contourArea(cnt)
3. 轮廓周长
也称为弧长。可以使用cv.arcLength()函数找到它。第二个参数指定形状是闭合轮廓(True
)还是曲线。
perimeter = cv.arcLength(cnt,True)
4. 轮廓近似
根据我们指定的精度,它可以将轮廓形状近似为顶点数量较少的其他形状。它是Douglas-Peucker算法的实现。检查维基百科页面上的算法和演示。
为了理解这一点,假设您试图在图像中找到一个正方形,但是由于图像中的某些问题,您没有得到一个完美的正方形,而是一个“坏形状”(如下图所示)。现在,您可以使用此功能来近似形状。在这种情况下,第二个参数称为epsilon,它是从轮廓到近似轮廓的最大距离。它是一个精度参数。需要正确选择epsilon才能获得正确的输出。
epsilon = 0.1*cv.arcLength(cnt,True)
approx = cv.approxPolyDP(cnt,epsilon,True)
下面,在第二张图片中,绿线显示了ε=弧长的10%时的近似曲线。第三幅图显示了ε=弧长度的1%时的情况。第三个参数指定曲线是否闭合。
5. 轮廓凸包
凸包外观看起来与轮廓逼近相似,但不相似(在某些情况下两者可能提供相同的结果)。在这里,cv.convexHull()函数检查曲线是否存在凸凹缺陷并对其进行校正。一般而言,凸曲线是始终凸出或至少平坦的曲线。如果在内部凸出,则称为凸度缺陷。例如,检查下面的手的图像。红线显示手的凸包。双向箭头标记显示凸度缺陷,这是凸包与轮廓线之间的局部最大偏差。
关于它的语法,有一些需要讨论:
hull = cv.convexHull(points[, hull[, clockwise[, returnPoints]]
参数详细信息:
- 点是我们传递到的轮廓。
- 凸包是输出,通常我们忽略它。
- 顺时针方向:方向标记。如果为True,则输出凸包为顺时针方向。否则,其方向为逆时针方向。
- returnPoints:默认情况下为True。然后返回凸包的坐标。如果为False,则返回与凸包点相对应的轮廓点的索引。
因此,要获得如上图所示的凸包,以下内容就足够了:
hull = cv.convexHull(cnt)
但是,如果要查找凸度缺陷,则需要传递returnPoints = False
。为了理解它,我们将拍摄上面的矩形图像。首先,我发现它的轮廓为cnt
。现在,我发现它的带有returnPoints = True
的凸包,得到以下值:[[[234 202]],[[51 202]],[[51 79]],[[234 79]]]
,它们是四个角 矩形的点。现在,如果对returnPoints = False
执行相同的操作,则会得到以下结果:[[129],[67],[0],[142]]
。这些是轮廓中相应点的索引。例如,检查第一个值:cnt [129] = [[234,202]]
与第一个结果相同(对于其他结果依此类推)。
当我们讨论凸度缺陷时,您将再次看到它。
6. 检查凸度
cv.isContourConvex()具有检查曲线是否凸出的功能。它只是返回True还是False。没什么大不了的。
k = cv.isContourConvex(cnt)
7. 边界矩形
有两种类型的边界矩形。
7.a.直角矩形
它是一个矩形,不考虑物体的旋转。所以边界矩形的面积不是最小的。它是由函数cv.boundingRect()找到的。
令(x,y)
为矩形的左上角坐标,而(w,h)
为矩形的宽度和高度。
x,y,w,h = cv.boundingRect(cnt)
cv.rectangle(img,(x,y),(x w,y h),(0,255,0),2)
7.b. 旋转矩形
这里,边界矩形是用最小面积绘制的,所以它也考虑了旋转。使用的函数是cv.minAreaRect()。它返回一个Box2D结构,其中包含以下细节 -(中心(x,y),(宽度,高度),旋转角度)。但要画出这个矩形,我们需要矩形的四个角。它由函数cv.boxPoints()获得
rect = cv.minAreaRect(cnt)
box = cv.boxPoints(rect)
box = np.int0(box)
cv.drawContours(img,[box],0,(0,0,255),2)
两个矩形都显示在一张单独的图像中。绿色矩形显示正常的边界矩形。红色矩形是旋转后的矩形。
8. 最小闭合圈
接下来,使用函数**cv.minEnclosingCircle(*()查找对象的圆周。它是一个以最小面积完全覆盖物体的圆。
(x,y),radius = cv.minEnclosingCircle(cnt)
center = (int(x),int(y))
radius = int(radius)
cv.circle(img,center,radius,(0,255,0),2)
9. 拟合一个椭圆
下一个是把一个椭圆拟合到一个物体上。它返回内接椭圆的旋转矩形。
ellipse = cv.fitEllipse(cnt)
cv.ellipse(img,ellipse,(0,255,0),2)
10. 拟合直线
同样,我们可以将一条直线拟合到一组点。下图包含一组白点。我们可以近似一条直线。
rows,cols = img.shape[:2]
[vx,vy,x,y] = cv.fitLine(cnt, cv.DIST_L2,0,0.01,0.01)
lefty = int((-x*vy/vx) y)
righty = int(((cols-x)*vy/vx) y)
cv.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
OpenCV中文官方文档:
http://woshicver.com/
OpenCV-Python 轮廓特征 | 二十二的更多相关文章
- 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...
- 二十二. Python基础(22)--继承
二十二. Python基础(22)--继承 ● 知识框架 ● 继承关系中self的指向 当一个对象调用一个方法时,这个方法的self形参会指向这个对象 class A: def get(s ...
- python3.4学习笔记(二十二) python 在字符串里面插入指定分割符,将list中的字符转为数字
python3.4学习笔记(二十二) python 在字符串里面插入指定分割符,将list中的字符转为数字在字符串里面插入指定分割符的方法,先把字符串变成list然后用join方法变成字符串str=' ...
- [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...
- 进击的Python【第十二章】:mysql介绍与简单操作,sqlachemy介绍与简单应用
进击的Python[第十二章]:mysql介绍与简单操作,sqlachemy介绍与简单应用 一.数据库介绍 什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,每个数 ...
- JAVA基础知识总结:一到二十二全部总结
>一: 一.软件开发的常识 1.什么是软件? 一系列按照特定顺序组织起来的计算机数据或者指令 常见的软件: 系统软件:Windows\Mac OS \Linux 应用软件:QQ,一系列的播放器( ...
- 剑指Offer(二十二):从上往下打印二叉树
剑指Offer(二十二):从上往下打印二叉树 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net/b ...
- [分享] IT天空的二十二条军规
Una 发表于 2014-9-19 20:25:06 https://www.itsk.com/thread-335975-1-1.html IT天空的二十二条军规 第一条.你不是什么都会,也不是什么 ...
- Bootstrap <基础二十二>超大屏幕(Jumbotron)
Bootstrap 支持的另一个特性,超大屏幕(Jumbotron).顾名思义该组件可以增加标题的大小,并为登陆页面内容添加更多的外边距(margin).使用超大屏幕(Jumbotron)的步骤如下: ...
- Web 前端开发精华文章推荐(HTML5、CSS3、jQuery)【系列二十二】
<Web 前端开发精华文章推荐>2014年第一期(总第二十二期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML ...
随机推荐
- Vue.observable()使用方法
前言 随着组件的细化,就会遇到多组件状态共享的情况, Vuex当然可以解决这类问题,不过就像 Vuex官方文档所说的,如果应用不够大,为避免代码繁琐冗余,最好不要使用它,今天我们介绍的是 vue.js ...
- 一个很实用的css技巧简析
我是小雨小雨,专注于更新有趣.实用内容的小伙,如果内容对大家有一点帮助,那么就请动动手指,给个关注.点赞支持一下吧. ^ - ^ 序言 前两天接到一个需求,其中包括一个有序的列表,我们今天就来看看这个 ...
- vs2017 tfs服务器迁移更换服务器IP地址方法
今天公司服务器换了IP地址,然后发现tfs的服务器删除不了,也添加不了.最后参考了其他vs版本提供的方法,找到了解决的方法. 一共需要修改两个地方: 1.找到项目的sln文件,使用其他文本编辑器打开, ...
- 一文看懂js中元素偏移量(offsetLeft,offsetTop,offsetWidth,offsetHeight)
偏移量(offset dimension) 偏移量:包括元素在屏幕上占用的所有可见空间,元素的可见大小有其高度,宽度决定,包括所有内边距,滚动条和边框大小(注意,不包括外边距). 以下4个属性可以获取 ...
- Git 相关问题分享,git reset与git revert的区别?
1.如果我在git add 后想要撤销操作,该怎么做? 使用 git rm --cache [文件名/ *] 或者 git reset HEAD, 为什么这个命令也会有效果呢,实际上reset将 HE ...
- 利用wps创建有目录的PDF/word
为什么要创建: 在阅读一些行业规范或者很长的文件,像是项目管理方案时,非常麻烦,定位需要重新返回目录去.--->所以我想能不能创建一个带目录的PDF,可以点击直接跳转,那就方便多了. 如何创建: ...
- 实现Sobel算子滤波、Robers算子滤波、Laplace算子滤波
前几天,老师布置了这样一个任务,读取图片并显示,反色后进行显示:进行Sobel算子滤波,然后反色,进行显示:进行Robers算子滤波,然后反色,进行显示.我最后加上了Laplace算子滤波,进行了比较 ...
- ASP.NET Core 中jwt授权认证的流程原理
目录 1,快速实现授权验证 1.1 添加 JWT 服务配置 1.2 颁发 Token 1.3 添加 API访问 2,探究授权认证中间件 2.1 实现 Token 解析 2.2 实现校验认证 1,快速实 ...
- React hooks详解
此篇文章仅是对hooks入门的总结,老鸟略过吧~ React从16.8.X以后增加了一个新特性,react hooks 让我们看看这个新特性又带来了哪些惊喜呢~以下内容我们采取不同方式创建组件来进行对 ...
- [日志分析]Graylog2进阶 通过正则解析Nginx日志
之前分享的 [日志分析]Graylog2采集Nginx日志 主动方式 这篇文章介绍了Graylog如何通过Graylog Collector Sidecar来采集nginx日志. 由于日志是未经处理的 ...