D - Tree of Tree ZOJ - 3201

这个题目我开始是这么定义的dp[i][j][0] dp[i][j][1] 表示对于第i个节点还有j个的选择 0 代表不选这个节点,1 代表选这个节点。

然后我写了,对题目理解出现了偏差写出来一个错误的,然后正确理解题意发现这样子写好麻烦。转移方程很难写。

上网搜题解,网上基本上都是这么定义的 dp[i][j]表示选第 i 个节点该子树的节点数为  j  的最大带权值。

所以这个就可以变成一个树形dp+01背包。

这个状态转移方程应该就是 dp[u][j]=max(dp[u][j] ,dp[u][j-k]+dp[v][k])  其实我觉得这个转移方程也没有那么好想。

这个01背包就是在枚举以u为根节点的这棵树的每一颗子树取多少个节点。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <iostream>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 1e5 + ;
int dp[][];
vector<int>G[];
int n, k; void dfs(int u,int pre)
{
for (int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if (v == pre) continue;
dfs(v, u);
for (int j = k; j >= ; j--)
{
for (int h = ; h < j; h++)
{
dp[u][j] = max(dp[u][j], dp[u][j - h] + dp[v][h]);
}
}
}
} int main()
{
while(scanf("%d%d",&n,&k)!=EOF)
{
memset(dp, , sizeof(dp));
for (int i = ; i <= n; i++) G[i].clear();
for (int i = ; i < n; i++) {
scanf("%d", &dp[i][]);
}
for(int i=;i<n;i++)
{
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(, -);
int ans = ;
for(int i=;i<n;i++)
{
ans = max(ans, dp[i][k]);
}
printf("%d\n", ans);
}
return ;
}

树形dp

C - Brackets POJ - 2955

这个题目其实我觉得很像就是在求回文,所以和那个兔子的题目很像,但是呢,还是有一点点的不同

回忆一下兔子的题目  兔子传送门

这个题目的状态转移方程也就是

if(条件判断) dp[i][j]=max(dp[i+1][dp[j-1]+2,dp[i][j])

else dp[i][j]=max(dp[i+1][j],dp[i][j-1])

这个题目还有一个地方,就是因为我们定义的dp[i][j]表示从i到j的最大的匹配了的数量,所以呢,()()()

这种情况,如果你值是进行状态转移,那就会出现问题了,

因为dp[1][2]=2 dp[2][3]=1 dp[3][4]=2  所以 dp[1][4]=dp[2][3]+2这个就不对了,这个时候,我们应该找一个切断点。

dp[1][4]的切断点就是dp[1][2]+dp[3][4]=4

所以说还有有一个for循环来找这个断点,这个我也没想明白是看题解的。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <string>
#include <iostream>
#define inf 0x3f3f3f3f
using namespace std;
int dp[][];
char s[]; int main()
{
while(scanf("%s",s+)!=EOF)
{
if (s[] == 'e') break;
memset(dp, , sizeof(dp));
int len = strlen(s + );
int ans = ;
for(int i=;i<=len;i++)
{
for(int j=;j+i-<=len;j++)
{
int ends = i + j - ;
if ((s[j]=='('&&s[ends]==')')||(s[j]=='['&&s[ends]==']')) dp[j][ends] =dp[j + ][ends - ] + ;
else dp[j][ends] = max(dp[j + ][ends], dp[j][ends - ]);
for (int k = j; k < ends; k++) dp[j][ends] = max(dp[j][ends], dp[j][k] + dp[k+][ends]);
//printf("j %c ends %c dp[%d][%d]=%d\n", s[j],s[ends],j, ends, dp[j][ends]);
}
}
printf("%d\n", dp[][len]);
}
return ;
}

区间dp

Q - 最大报销额HDU - 1864

这个题目我感觉还比较简单啊,就是字符串处理要注意一下,可以看我的另外一篇博客用sscanf的方法来处理很方便。

https://www.cnblogs.com/EchoZQN/p/10830015.html

处理完之后就是一个简单的01背包,需要注意的是因为有小数,所以*100转化成整数来处理即可。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <string>
#include <iostream>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 3e6 + ;
int dp[maxn], n, m;
int a[];
double q; int main()
{
while(scanf("%lf%d",&q,&m)!=EOF)
{
if (m == ) break;
n = (int)(q * );
int tot = ;
for(int k=;k<=m;k++)
{
int num;
scanf("%d", &num);
char ch, cs[];
double mon;
int A = , B = , C = , flag = ;
for(int i=;i<=num;i++)
{
scanf("%s", cs);
sscanf(cs, "%c:%lf", &ch, &mon);
int mm = (int)(mon * );
if (ch == 'A') A += mm;
else if (ch == 'B') B += mm;
else if (ch == 'C') C += mm;
else flag = ;
if (A > || B > || C > || (A + B + C) > ) flag = ;
// printf("%d %d %d\n", A, B, C);
}
if (flag == ) a[++tot] = A + B + C;
}
memset(dp, -inf, sizeof(dp));
dp[] = ;
//for (int i = 1; i <= tot; i++) printf("%d\n", a[i]);
//printf("n=%d\n", n);
for(int i=;i<=tot;i++)
{
for(int j=n;j>=a[i];j--)
{
dp[j] = max(dp[j], dp[j - a[i]]);
}
}
//printf("%d\n", dp[n]);
int ans = ;
for(int i=n;i>=;i--)
{
if(dp[i]>=)
{
ans = i;
break;
}
}
printf("%.2lf\n", ans*1.0 / );
}
return ;
}

01背包

这个就是今天的dp训练了,接下来就是复习以前的算法。

dp (1)的更多相关文章

  1. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  2. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  3. AEAI DP V3.7.0 发布,开源综合应用开发平台

    1  升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...

  4. AEAI DP V3.6.0 升级说明,开源综合应用开发平台

    AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...

  5. BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]

    1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4026  Solved: 1473[Submit] ...

  6. [斜率优化DP]【学习笔记】【更新中】

    参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  8. px、dp和sp,这些单位有什么区别?

    DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...

  9. android px转换为dip/dp

    /** * 根据手机的分辨率从 dp 的单位 转成为 px(像素) */ public int dipTopx(Context context, float dpValue) { final floa ...

  10. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

随机推荐

  1. Django 表单处理流程

    Django 的表单处理:视图获取请求,执行所需的任何操作,包括从模型中读取数据,然后生成并返回HTML页面(从模板中),我们传递一个包含要显示的数据的上下文.使事情变得更复杂的是,服务器还需要能够处 ...

  2. Linux C++ 网络编程学习系列(6)——多路IO之epoll高级用法

    poll实现多路IO 源码地址:https://github.com/whuwzp/linuxc/tree/master/epoll_libevent 源码说明: server.cpp: 监听127. ...

  3. JVM崩溃的原因及解决!

    JVM崩溃的原因及解决! 前些天,搞JNI的时候,报了个JVM崩溃的错.错误信息如下: # # An unexpected error has been detected by HotSpot Vir ...

  4. Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(七)之Access Control

    Access control ( or implementation hiding) is about "not getting it right the first time." ...

  5. XFS文件系统的备份与恢复

    永久修改主机名:hostnamectl set-hostname oldboy临时修改主机名:hostname xfsdump备份xfsdump -f 备份的文件位置 要备份的分区或者磁盘 免交互备份 ...

  6. Ajax 简述与基础语法

    目录 Ajax 1. 原生 JS 实现 Ajax 2. 使用 Ajax 实现异步通信 a. Ajax 的基础语法 b. 用 Ajax 传递数据 i. 传递字符串数据 ii. 传递 JSON 数据 3. ...

  7. 史上最详细的VM虚拟机安装Kali-linux教程(以2020.1版本为例,含下载地址+默认提升为root权限)

    一.官方下载 Kali Linux 官方网址:www.Kali.org下载方式分两种:http 下载和 bt 下载(由于是国外网站 http 方式下载会非常慢),选择对应版本点击即可下载. 二.创建新 ...

  8. PHP代码审计理解(三)---EMLOG某插件文件写入

    此漏洞存在于emlog下的某个插件---友言社会化评论1.3. 我们可以看到, uyan.php 文件在判断权限之前就可以接收uid参数.并且uid未被安全过滤即写入到了$uyan_code中. 我们 ...

  9. HTTPoxy漏洞(CVE-2016-5385)复现记录

    漏洞介绍: httpoxy是cgi中的一个环境变量:而服务器和CGI程序之间通信,一般是通过进程的环境变量和管道. CGI介绍 CGI 目前由 NCSA 维护,NCSA 定义 CGI 如下:CGI(C ...

  10. pytorch中tensor的属性 类型转换 形状变换 转置 最大值

    import torch import numpy as np a = torch.tensor([[[1]]]) #只有一个数据的时候,获取其数值 print(a.item()) #tensor转化 ...