greenplum 数组操作
参考:http://gpdb.docs.pivotal.io/4390/admin_guide/query/topics/functions-operators.html
Function | Return Type | Full Syntax | Description |
---|---|---|---|
matrix_add(array[], array[]) | smallint[], int[], bigint[], float[] | matrix_add( array[[1,1],[2,2]], array[[3,4],[5,6]]) | Adds two two-dimensional matrices. The matrices must be conformable. |
matrix_multiply( array[], array[]) | smallint[]int[], bigint[], float[] | matrix_multiply( array[[2,0,0],[0,2,0],[0,0,2]], array[[3,0,3],[0,3,0],[0,0,3]] ) | Multiplies two, three- dimensional arrays. The matrices must be conformable. |
matrix_multiply( array[], expr) | int[], float[] | matrix_multiply( array[[1,1,1], [2,2,2], [3,3,3]], 2) | Multiplies a two-dimensional array and a scalar numeric value. |
matrix_transpose( array[]) | Same as input arraytype. | matrix_transpose( array [[1,1,1],[2,2,2]]) | Transposes a two-dimensional array. |
pinv(array []) | smallint[]int[], bigint[], float[] | pinv(array[[2.5,0,0],[0,1,0],[0,0,.5]]) | Calculates the Moore-Penrose pseudoinverse of a matrix. |
unnest (array[]) | set of anyelement | unnest( array['one', 'row', 'per', 'item']) | Transforms a one dimensional array into rows. Returns a set ofanyelement, a polymorphic pseudotype in PostgreSQL. |
Function | Return Type | Full Syntax | Description |
---|---|---|---|
MEDIAN (expr) | timestamp, timestampz, interval, float | MEDIAN (expression)
Example: SELECT department_id, MEDIAN(salary) |
Can take a two-dimensional array as input. Treats such arrays as matrices. |
PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BYexpr [DESC/ASC]) | timestamp, timestampz, interval, float | PERCENTILE_CONT(percentage) WITHIN GROUP (ORDER BY expression)
Example: SELECT department_id, |
Performs an inverse function that assumes a continuous distribution model. It takes a percentile value and a sort specification and returns the same datatype as the numeric datatype of the argument. This returned value is a computed result after performing linear interpolation. Null are ignored in this calculation. |
PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BYexpr [DESC/ASC]) | timestamp, timestampz, interval, float | PERCENTILE_DISC(percentage) WITHIN GROUP (ORDER BY expression)
Example: SELECT department_id, |
Performs an inverse distribution function that assumes a discrete distribution model. It takes a percentile value and a sort specification. This returned value is an element from the set. Null are ignored in this calculation. |
sum(array[]) | smallint[]int[], bigint[], float[] | sum(array[[1,2],[3,4]])
Example: CREATE TABLE mymatrix (myvalue int[]); |
Performs matrix summation. Can take as input a two-dimensional array that is treated as a matrix. |
pivot_sum (label[], label, expr) | int[], bigint[], float[] | pivot_sum( array['A1','A2'], attr, value) | A pivot aggregation using sum to resolve duplicate entries. |
mregr_coef(expr, array[]) | float[] | mregr_coef(y, array[1, x1, x2]) | The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_coefcalculates the regression coefficients. The size of the return array formregr_coef is the same as the size of the input array of independent variables, since the return array contains the coefficient for each independent variable. |
mregr_r2 (expr, array[]) | float | mregr_r2(y, array[1, x1, x2]) | The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_r2calculates the r-squared error value for the regression. |
mregr_pvalues(expr, array[]) | float[] | mregr_pvalues(y, array[1, x1, x2]) | The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_pvaluescalculates the p-values for the regression. |
mregr_tstats(expr, array[]) | float[] | mregr_tstats(y, array[1, x1, x2]) | The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_tstatscalculates the t-statistics for the regression. |
nb_classify(text[], bigint, bigint[], bigint[]) | text | nb_classify(classes, attr_count, class_count, class_total) | Classify rows using a Naive Bayes Classifier. This aggregate uses a baseline of training data to predict the classification of new rows and returns the class with the largest likelihood of appearing in the new rows. |
nb_probabilities(text[], bigint, bigint[], bigint[]) | text | nb_probabilities(classes, attr_count, class_count, class_total) | Determine probability for each class using a Naive Bayes Classifier. This aggregate uses a baseline of training data to predict the classification of new rows and returns the probabilities that each class will appear in new rows. |
greenplum 数组操作的更多相关文章
- Javascript数组操作
使用JS也算有段时日,然对于数组的使用,总局限于很初级水平,且每每使用总要查下API,或者写个小Demo测试下才算放心,一来二去,浪费不少时间:思虑下,堪能如此继续之?当狠心深学下方是正道. 原文链接 ...
- JavaScript jQuery 中定义数组与操作及jquery数组操作
首先给大家介绍javascript jquery中定义数组与操作的相关知识,具体内容如下所示: 1.认识数组 数组就是某类数据的集合,数据类型可以是整型.字符串.甚至是对象Javascript不支持多 ...
- php数组操作集锦- 掌握了数组操作, 也就掌握了php
参考下面的文章, 是很好的: http://www.cnblogs.com/staven/p/5142515.html http://pcwanli.blog.163.com/blog/static/ ...
- JavaScript 数组操作
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- JavaScript中数组操作常用方法
JavaScript中数组操作常用方法 1.检测数组 1)检测对象是否为数组,使用instanceof 操作符 if(value instanceof Array) { //对数组执行某些操作 } 2 ...
- php 常用数组操作
php常用的数组操作函数,包括数组的赋值.拆分.合并.计算.添加.删除.查询.判断.排序等 array_combine 功能:用一个数组的值作为新数组的键名,另一个数组的值作为新数组的值 <?p ...
- 005-Scala数组操作实战详解
005-Scala数组操作实战详解 Worksheet的使用 交互式命令执行平台 记得每次要保存才会出相应的结果 数组的基本操作 数组的下标是从0开始和Tuple不同 缓冲数组ArrayBuffer( ...
- JavaScript中常见的数组操作函数及用法
JavaScript中常见的数组操作函数及用法 昨天写了个帖子,汇总了下常见的JavaScript中的字符串操作函数及用法.今天正好有时间,也去把JavaScript中常见的数组操作函数及用法总结一下 ...
- jQuery_03之事件、动画、类数组操作
一.事件: 1.模式触发事件: ①DOM:elem.onXXX();只能触发直接用onXXX绑定的事件处理函数:用addEventistener添加的事件监听无法模拟出发触发: ②jQuery:$ ...
随机推荐
- 解决:使用 swiper 自动轮播图片,当拖动过 swiper 内的内容时,导致不继续自动轮播
版本为1.3 当使用了 swiper 后: var mySwiper = new Swiper('.banner .swiper-container', { autoplay: 3000, loop: ...
- jackson处理日期异常
原 jackson处理日期异常 2018年01月09日 10:50:19 阅读数:70 1.异常信息 2.原因 默认情况下,fasterxml json只支持几种format,但是肯定不支持" ...
- pandas 存储文件到MySQL 以及读取
pandas导入数据到MySQL 1.导入必要的库 2.创建链接 3.导入数据 import pandas as pd from sqlalchemy import create_engine con ...
- iOS项目开发日常之创建文件(协议、类、分类、扩展)
iOS项目开发过程中,是以不断创建文件的形式进行着的. 创建得比较频繁的文件类型是: 这两个类型中创建的文件有:子类.分类.扩展.协议四种文件,如下: 这四类文件是频繁创建的,我们来看一下各自分 ...
- python 连接oracle基础环境配置方法
配置基础: 1.python3.7 2.oracle server 11g 64位 3.PLSQL 64位 4.instantclient-basic-windows.x64-11.2.0.4.0这个 ...
- 【PAT甲级】1021 Deepest Root (25 分)(暴力,DFS)
题意: 输入一个正整数N(N<=10000),然后输入N-1条边,求使得这棵树深度最大的根节点,递增序输出.如果不是一棵树,输出这张图有几个部分. trick: 时间比较充裕数据可能也不是很极限 ...
- 六、linux基础-计算机网络_线程_进程
6 计算机网络-线程和进程6.1 TCP/IP协议 TCP/IP是Unix/Linux世界的网络基础,在某种意义上,Unix网络就是Tcp/ip,而且Tcp/ip就是网络互连的标准他不是一个独立的协议 ...
- CSS3-边框(border-radius、box-shadow、border-image)
CSS3中的边框属性:border-radius.box-shadow.border-image 圆角:border-radius 使用 CSS3 border-radius 属性,你可以给任何元素制 ...
- Tomcat 8 Invalid character found in the request target. The valid characters are defined in RFC 3986
终极解决方案: Invalid character found in the request target. The valid characters are defined in RFC 3986 ...
- Codeforces1304F.Animal Observation
分析一下得知是DP问题,时间复杂度符合,设dp[i][j]为从第i天开始,第j个位置能得到的最大值,其有三种转移状态 1.与上一天的选择有重合 2.与上一天的选择没有重合,且上一天的选择在左边 3.与 ...