greenplum 数组操作
参考:http://gpdb.docs.pivotal.io/4390/admin_guide/query/topics/functions-operators.html
Function | Return Type | Full Syntax | Description |
---|---|---|---|
matrix_add(array[], array[]) | smallint[], int[], bigint[], float[] | matrix_add( array[[1,1],[2,2]], array[[3,4],[5,6]]) | Adds two two-dimensional matrices. The matrices must be conformable. |
matrix_multiply( array[], array[]) | smallint[]int[], bigint[], float[] | matrix_multiply( array[[2,0,0],[0,2,0],[0,0,2]], array[[3,0,3],[0,3,0],[0,0,3]] ) | Multiplies two, three- dimensional arrays. The matrices must be conformable. |
matrix_multiply( array[], expr) | int[], float[] | matrix_multiply( array[[1,1,1], [2,2,2], [3,3,3]], 2) | Multiplies a two-dimensional array and a scalar numeric value. |
matrix_transpose( array[]) | Same as input arraytype. | matrix_transpose( array [[1,1,1],[2,2,2]]) | Transposes a two-dimensional array. |
pinv(array []) | smallint[]int[], bigint[], float[] | pinv(array[[2.5,0,0],[0,1,0],[0,0,.5]]) | Calculates the Moore-Penrose pseudoinverse of a matrix. |
unnest (array[]) | set of anyelement | unnest( array['one', 'row', 'per', 'item']) | Transforms a one dimensional array into rows. Returns a set ofanyelement, a polymorphic pseudotype in PostgreSQL. |
Function | Return Type | Full Syntax | Description |
---|---|---|---|
MEDIAN (expr) | timestamp, timestampz, interval, float | MEDIAN (expression)
Example:
|
Can take a two-dimensional array as input. Treats such arrays as matrices. |
PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BYexpr [DESC/ASC]) | timestamp, timestampz, interval, float | PERCENTILE_CONT(percentage) WITHIN GROUP (ORDER BY expression)
Example:
|
Performs an inverse function that assumes a continuous distribution model. It takes a percentile value and a sort specification and returns the same datatype as the numeric datatype of the argument. This returned value is a computed result after performing linear interpolation. Null are ignored in this calculation. |
PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BYexpr [DESC/ASC]) | timestamp, timestampz, interval, float | PERCENTILE_DISC(percentage) WITHIN GROUP (ORDER BY expression)
Example:
|
Performs an inverse distribution function that assumes a discrete distribution model. It takes a percentile value and a sort specification. This returned value is an element from the set. Null are ignored in this calculation. |
sum(array[]) | smallint[]int[], bigint[], float[] | sum(array[[1,2],[3,4]])
Example:
|
Performs matrix summation. Can take as input a two-dimensional array that is treated as a matrix. |
pivot_sum (label[], label, expr) | int[], bigint[], float[] | pivot_sum( array['A1','A2'], attr, value) | A pivot aggregation using sum to resolve duplicate entries. |
mregr_coef(expr, array[]) | float[] | mregr_coef(y, array[1, x1, x2]) | The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_coefcalculates the regression coefficients. The size of the return array formregr_coef is the same as the size of the input array of independent variables, since the return array contains the coefficient for each independent variable. |
mregr_r2 (expr, array[]) | float | mregr_r2(y, array[1, x1, x2]) | The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_r2calculates the r-squared error value for the regression. |
mregr_pvalues(expr, array[]) | float[] | mregr_pvalues(y, array[1, x1, x2]) | The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_pvaluescalculates the p-values for the regression. |
mregr_tstats(expr, array[]) | float[] | mregr_tstats(y, array[1, x1, x2]) | The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_tstatscalculates the t-statistics for the regression. |
nb_classify(text[], bigint, bigint[], bigint[]) | text | nb_classify(classes, attr_count, class_count, class_total) | Classify rows using a Naive Bayes Classifier. This aggregate uses a baseline of training data to predict the classification of new rows and returns the class with the largest likelihood of appearing in the new rows. |
nb_probabilities(text[], bigint, bigint[], bigint[]) | text | nb_probabilities(classes, attr_count, class_count, class_total) | Determine probability for each class using a Naive Bayes Classifier. This aggregate uses a baseline of training data to predict the classification of new rows and returns the probabilities that each class will appear in new rows. |
greenplum 数组操作的更多相关文章
- Javascript数组操作
使用JS也算有段时日,然对于数组的使用,总局限于很初级水平,且每每使用总要查下API,或者写个小Demo测试下才算放心,一来二去,浪费不少时间:思虑下,堪能如此继续之?当狠心深学下方是正道. 原文链接 ...
- JavaScript jQuery 中定义数组与操作及jquery数组操作
首先给大家介绍javascript jquery中定义数组与操作的相关知识,具体内容如下所示: 1.认识数组 数组就是某类数据的集合,数据类型可以是整型.字符串.甚至是对象Javascript不支持多 ...
- php数组操作集锦- 掌握了数组操作, 也就掌握了php
参考下面的文章, 是很好的: http://www.cnblogs.com/staven/p/5142515.html http://pcwanli.blog.163.com/blog/static/ ...
- JavaScript 数组操作
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- JavaScript中数组操作常用方法
JavaScript中数组操作常用方法 1.检测数组 1)检测对象是否为数组,使用instanceof 操作符 if(value instanceof Array) { //对数组执行某些操作 } 2 ...
- php 常用数组操作
php常用的数组操作函数,包括数组的赋值.拆分.合并.计算.添加.删除.查询.判断.排序等 array_combine 功能:用一个数组的值作为新数组的键名,另一个数组的值作为新数组的值 <?p ...
- 005-Scala数组操作实战详解
005-Scala数组操作实战详解 Worksheet的使用 交互式命令执行平台 记得每次要保存才会出相应的结果 数组的基本操作 数组的下标是从0开始和Tuple不同 缓冲数组ArrayBuffer( ...
- JavaScript中常见的数组操作函数及用法
JavaScript中常见的数组操作函数及用法 昨天写了个帖子,汇总了下常见的JavaScript中的字符串操作函数及用法.今天正好有时间,也去把JavaScript中常见的数组操作函数及用法总结一下 ...
- jQuery_03之事件、动画、类数组操作
一.事件: 1.模式触发事件: ①DOM:elem.onXXX();只能触发直接用onXXX绑定的事件处理函数:用addEventistener添加的事件监听无法模拟出发触发: ②jQuery:$ ...
随机推荐
- php学习 打星星
<?php // 输入几行 $k=9; // 打孔三角 for($i=1;$i<=$k;$i++){ if($i==$k){ for($n=1;$n<=$k*2-1;$n++){ e ...
- 「SDOI2005」区间
「SDOI2005」区间 传送门 记录每一个位置作为左端点和右端点的出现次数,然后直接考虑差分即可. 参考代码: #include <cstdio> #define rg register ...
- liux vim 命令
清除所有行 先 gg 再 dG
- 投资人分享答疑----HHR计划----以太直播课第三课
分享大纲:(祥峰投资) 一,投资人会看什么: 1,赛道定位:“生意”还是“独角兽-to be”? 2,如何退出?上市还是收购? 3, 团队能力,愿景力 4,壁垒:数据和价值 5,价格 二,融资需要准 ...
- PAT A1135 Is It A Red Black Tree
判断一棵树是否是红黑树,按题给条件建树,dfs判断即可~ #include<bits/stdc++.h> using namespace std; ; struct node { int ...
- 七 Spring的IOC的注解方式
Spring的IOC的注解方式入门 引入注解约束,配置组件扫描 类上的注解: @Conponent @Controller @Service @Repository 普通属性的注解 @value ...
- Python学习第十二课——json&pickle&XML模块&OS模块
json模块 import json dic={'name':'hanhan'} i=8 s='hello' l=[11,22] data=json.dumps(dic) #json.dumps() ...
- ProgressBarForm 进度条
ProgressBarForm public partial class ProgressBarForm : Form { private Panel panel1 = new System.Wind ...
- eclipse启动时权限不够的问题
eclipse启动时权限不够的问题 2009年04月28日 19:19:00 tomey21 阅读数 1445 安装好后每次都要用root权限运行,比较郁闷,摸索了一下,修改一下相关目录的权限就可 ...
- Linux centosVMware Linux监控平台介绍、zabbix监控介绍、安装zabbix、忘记Admin密码如何做
一.Linux监控平台介绍 cacti.nagios.zabbix.smokeping.open-falcon等等 cacti.smokeping偏向于基础监控,成图非常漂亮 cacti.nagios ...