luogu P3358 最长k可重区间集问题
网络流建图好难,这题居然是网络流(雾,一般分析来说,有限制的情况最大流情况可以拆点通过capacity来限制,比如只使用一次,把一个点拆成入点出点,capacity为1即可,这题是限制最大k重复,可以联想到最大流问题,设源点汇点,限制的k就是其最大的capacity,其最大流一定<=k,跑出来一定满足条件,但如何计算长度呢,就使用费用流吧,最大费用流就把边权取反即可,我们不知道输入的数据范围,只知道个数,就离散化一下,每个区间只能选一次,就对离散化后的l对r连一条capacity为1,权为-len的边,源点对1连一条capacity为k的边,n对汇点连一条capacity为k的边,因为判断是否重复是从头到尾,那么源点汇点就分别连接头尾,但是这样连图不一定保证每个点都考虑进去了,可能会出现图不连通的情况,题目是开区间,那么(i,i+1)和(i+1,i+2)一定是没有交点的,就对i与i+1连一条capacity为无穷,权为0的边,这样就能保证图连通且不会影响到答案,因为如果有断层,其会顺着往下搜索,权为0,capacity为无穷,对答案无影响
#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long LL; const int maxm = 5e3+;
const int INF = 0x3f3f3f3f; struct edge{
int u, v, cap, flow, cost, nex;
} edges[maxm]; struct Points{
int l, r, len;
} point[]; int head[maxm], cur[maxm], cnt, fa[], d[], n, allx[];
bool inq[]; void init() {
memset(head, -, sizeof(head));
} void add(int u, int v, int cap, int cost) {
edges[cnt] = edge{u, v, cap, , cost, head[u]};
head[u] = cnt++;
} void addedge(int u, int v, int cap, int cost) {
add(u, v, cap, cost), add(v, u, , -cost);
} bool spfa(int s, int t, int &flow, LL &cost) {
for(int i = ; i <= ((n<<)|); ++i) d[i] = INF; //init()
memset(inq, false, sizeof(inq));
d[s] = , inq[s] = true;
fa[s] = -, cur[s] = INF;
queue<int> q;
q.push(s);
while(!q.empty()) {
int u = q.front();
q.pop();
inq[u] = false;
for(int i = head[u]; i != -; i = edges[i].nex) {
edge& now = edges[i];
int v = now.v;
if(now.cap > now.flow && d[v] > d[u] + now.cost) {
d[v] = d[u] + now.cost;
fa[v] = i;
cur[v] = min(cur[u], now.cap - now.flow);
if(!inq[v]) {q.push(v); inq[v] = true;}
}
}
}
if(d[t] == INF) return false;
flow += cur[t];
cost += 1LL*d[t]*cur[t];
for(int u = t; u != s; u = edges[fa[u]].u) {
edges[fa[u]].flow += cur[t];
edges[fa[u]^].flow -= cur[t];
}
return true;
} int MincostMaxflow(int s, int t, LL &cost) {
cost = ;
int flow = ;
while(spfa(s, t, flow, cost));
return flow;
} void run_case() {
init();
int l, r, k, xcnt = ;
cin >> n >> k;
for(int i = ; i <= n; ++i) {
cin >> l >> r;
allx[++xcnt] = l, allx[++xcnt] = r, point[i] = Points{l, r, r-l};
}
sort(allx+,allx++xcnt);
int len = unique(allx+,allx++xcnt)-allx;
for(int i = ; i <= n; ++i) {
point[i].l = lower_bound(allx+,allx+len,point[i].l)-allx;
point[i].r = lower_bound(allx+,allx+len,point[i].r)-allx;
}
for(int i = ; i < len-; ++i)
addedge(i, i+, INF, );
int s = , t = len;
for(int i = ; i <= n; ++i) {
addedge(point[i].l, point[i].r, , -point[i].len);
}
addedge(s, , k, ), addedge(len-, t, k, );
LL cost = ;
MincostMaxflow(s, t, cost);
cout << -cost;
} int main() {
ios::sync_with_stdio(false), cin.tie();
run_case();
cout.flush();
return ;
}
luogu P3358 最长k可重区间集问题的更多相关文章
- (luogu P3358)最长k可重区间集问题 [TPLY]
最长k可重区间集问题 题目链接 https://www.luogu.org/problemnew/show/3358 做法 所有点向下一个点连容量为k费用为0的边 l和r连容量为1费用为区间长度的边 ...
- 网络流 P3358 最长k可重区间集问题
P3358 最长k可重区间集问题 题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k, ...
- 洛谷P3358 最长k可重区间集问题(费用流)
题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...
- 【Luogu】P3358最长k可重区间集问题(费用流)
题目链接 这题费用瘤,数据貌似还是错的. 把线段抽象抽象拆成两个点,入点表示左端,出点表示右端,连上容量为1费用-长度的边. 不相交线段随便连下,源点向拆出的原点S'连费用为0容量k,然后跑费用流. ...
- P3358 最长k可重区间集问题
题目链接 \(Click\) \(Here\) 这题的写法非常巧妙. 每个位置的点向它的下一个位置连一个容量为\(INF\)的边,从区间的左端点往右端点拉一条容量为\(1\),费用为区间长度的边,从起 ...
- 洛谷P3358 最长k可重区间集问题(费用流)
传送门 因为一个zz错误调了一个早上……汇点写错了……spfa也写错了……好吧好像是两个…… 把数轴上的每一个点向它右边的点连一条边,容量为$k$,费用为$0$,然后把每一个区间的左端点向右端点连边, ...
- 洛谷 P3358 最长k可重区间集问题 【最大费用最大流】
同 poj 3680 https:www.cnblogs.com/lokiii/p/8413139.html #include<iostream> #include<cstdio&g ...
- 最长k可重区间集
P3358 最长k可重区间集问题 P3357 最长k可重线段集问题 P3356 火星探险问题 P4012 深海机器人问题 P3355 骑士共存问题 P2754 [CTSC1999]家园 题目描述 ...
- 「网络流24题」「LuoguP3358」 最长k可重区间集问题(费用流
题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...
随机推荐
- 吴裕雄 python 神经网络——TensorFlow 队列操作
import tensorflow as tf q = tf.FIFOQueue(2, "int32") init = q.enqueue_many(([0, 10],)) x = ...
- 进程,内存,管理 ps,pstree,top,free,vmstat,iftop,lsof,查看网速
一些基础 不同进程之间,进行数据访问 同一主机:pipe 管道 socket 套接字文件 signal 信号 shm shared memory semaphore 信号量,一种计数器 不 ...
- 【原】简单shell练习(六)
1.shell获取进程号并杀掉该进程 kill - $(ps -ef | grep node| grep -v grep | awk '{print $2}') 解析: ps (processStat ...
- VS中编码格式的问题(待总结)
今天又遇到这样的事情了,VS中代码明明是正确的,却报某个变量未定义.百思不得解,前面增加了一个换行之后,竟然又神奇般的复原了. 最后确认是编码格式的问题,后来把有问题的那部分代码粘贴到微软的" ...
- 解决方法:Could not load file or assembly 'WebGrease, Version=1.5.1.25624, Culture=neutral, PublicKeyToken=31bf3856ad364e35' or one of its dependencies.
最近使用VS2015调试ASP.NET 程序遇到了该问题: 在网上找了很多方法都不能解决,最后自己解决了,方法如下: 在project -> NuGet管理中找到已安装的所有程序:将Web Op ...
- 15、python面对对象之类和对象
前言:本文主要介绍python面对对象中的类和对象,包括类和对象的概念.类的定义.类属性.实例属性及实例方法等. 一.类和对象的概念 问题:什么是类?什么是实例对象? 类:是一类事物的抽象概念,不是真 ...
- Dart语言学习(十) Dart流程控制语句
一.条件语句:if.if...elseif.if...elseif...else int score = 95; if (score >=90) { print('优秀'); } else if ...
- 「JSOI2014」打兔子
「JSOI2014」打兔子 传送门 首先要特判 \(k \ge \lceil \frac{n}{2} \rceil\) 的情况,因为此时显然可以消灭所有的兔子,也就是再环上隔一个点打一枪. 但是我们又 ...
- JavaScript - onunload失效
参考 https://stackoverflow.com/questions/7794301/window-onunload-is-not-working-properly-in-chrome-bro ...
- static关键字的作用是什么?
static的作用:常用来修饰变量. 全局变量被static修饰后,就称之为静态全局变量:局部变量被static修饰后,就称之为静态局部变量.统称为静态变量. 如果需要进一步解释下面的现象,可以了解i ...