大力数学题,发现自己好久没写多项式水平急速下降,求逆都要写挂233

首先看到关于多项式的等比数列求和,我们容易想到先求出每一项的系数然后最后累加起来即可,即设\(f_i=\sum_{n=0}^{\infty} n^kr^n\),那么最后\(ans=\sum_{i=0}^m a_if_i\)

然后你直接去OEIS就找到了它的生成函数,一波搞定233

好了我们认真开始推式子,\(f_i=\sum_{n=0}^{\infty} n^kr^n\)

\(r\cdot f_i=\sum_{n=1}^\infty (n-1)^kr^n\)

即\((1-r)f_i=\sum_{n=1}^\infty (n^k-(n-1)^k)r^n=r\cdot \sum_{n=0}^\infty ((n+1)^k-n^k)r^n\)

上式等于\(r\cdot \sum_{n=0}^\infty\sum_{j=0}^{i-1} C_i^j\cdot n^i r^n=r\cdot \sum_{j=0}^{i-1} C_i^j\cdot \sum_{n=0}^\infty n^i r^n=r\cdot\sum_{j=0}^{i-1} C_i^j\cdot f_j\)

即有\(f_i=\frac{r}{1-r}\cdot \sum_{j=0}^{i-1} C_i^j\cdot f_j\)

把组合数展开就有\(\frac{f_i}{i!}=\sum_{j=0}^{i-1} \frac{f_j}{j!}(\frac{r}{1-r}\cdot\frac{1}{(k-i)!})\)

看出来这是个分治NTT的形式,用类似于板子题的方法转化为多项式求逆解决

具体地,令\(F(x)=1-\frac{1}{i!}\cdot\frac{r}{1-r}\),对\(F(x)\)求逆得出\(G(x)\)再乘回\(i!\)即可求出\(f(x)\)

CODE

#include<cstdio>
#include<cctype>
#include<algorithm>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=100005,mod=998244353;
int n,r,F[N<<3],G[N<<3],fact[N],inv[N],A[N],invr,mtir,ans;
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
char Fin[S],*A,*B;
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
#undef tc
}File;
inline int sum(CI x,CI y)
{
int t=x+y; return t>=mod?t-mod:t;
}
inline int sub(CI x,CI y)
{
int t=x-y; return t<0?t+mod:t;
}
inline int quick_pow(int x,int p=mod-2,int mul=1)
{
for (;p;p>>=1,x=1LL*x*x%mod) if (p&1) mul=1LL*mul*x%mod; return mul;
}
inline void init(CI n)
{
RI i; for (fact[0]=i=1;i<=n;++i) fact[i]=1LL*fact[i-1]*i%mod;
for (inv[n]=quick_pow(fact[n]),i=n-1;~i;--i) inv[i]=1LL*inv[i+1]*(i+1)%mod;
}
class Poly_Solver
{
private:
int rev[N<<3],T[N<<3],lim,p;
inline void init(CI n)
{
for (lim=1,p=0;lim<=(n<<1);lim<<=1,++p);
for (RI i=0;i<lim;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<p-1);
}
inline void swap(int& x,int& y)
{
int t=x; x=y; y=t;
}
inline void NTT(int *f,CI opt)
{
RI i; for (i=0;i<lim;++i) if (i<rev[i]) swap(f[i],f[rev[i]]);
for (i=1;i<lim;i<<=1)
{
int m=i<<1,D=quick_pow(3,~opt?(mod-1)/m:mod-1-(mod-1)/m);
for (RI j=0;j<lim;j+=m)
{
int W=1; for (RI k=0;k<i;++k,W=1LL*W*D%mod)
{
int x=f[j+k],y=1LL*f[i+j+k]*W%mod;
f[j+k]=sum(x,y); f[i+j+k]=sub(x,y);
}
}
}
if (!~opt)
{
int Inv=quick_pow(lim); for (i=0;i<lim;++i) f[i]=1LL*f[i]*Inv%mod;
}
}
inline void inv(int *F,int *G,CI n)
{
if (n==1) return (void)(G[0]=quick_pow(F[0]));
inv(F,G,n+1>>1); init(n<<1); copy(F,F+n,T);
NTT(T,1); NTT(G,1); for (RI i=0;i<lim;++i)
G[i]=1LL*sub(2,1LL*T[i]*G[i]%mod)*G[i]%mod;
NTT(G,-1); fill(T+n,T+lim,0); fill(G+n,G+lim,0);
}
public:
inline void get_inv(int *F,int *G,CI n)
{
for (lim=1;lim<=(n<<1);lim<<=1);
fill(T,T+lim,0); fill(G,G+lim,0); inv(F,G,n);
}
}P;
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
File.read(n); File.read(r); invr=quick_pow(sub(1,r)); mtir=1LL*invr*r%mod;
RI i; for (init(n),i=0;i<=n;++i) File.read(A[i]),F[i]=sum(mod,-1LL*inv[i]*mtir%mod);
for (F[0]=1,P.get_inv(F,G,n+1),i=0;i<=n;++i) G[i]=1LL*G[i]*fact[i]%mod*invr%mod;
for (i=0;i<=n;++i) ans=sum(ans,1LL*G[i]*A[i]%mod); return printf("%d",ans),0;
}

Luogu P5349 幂的更多相关文章

  1. [luogu P5349] 幂 解题报告 (分治FFT)

    interlinkage: https://www.luogu.org/problemnew/show/P5349 description: solution: 设$g(x)=\sum_{n=0}^{ ...

  2. Luogu P1010 幂次方

    [橙题不会做系列]QAQ 是李老师上课的题目-- 这题最开始想法是打表做.事实证明这样做也可以( 老师用的是位运算-- 这种一步步分解也能想到用递归qwq #include <algorithm ...

  3. p5349 幂

    分析 https://www.cnblogs.com/cjyyb/p/10822490.html 代码 #include<bits/stdc++.h> using namespace st ...

  4. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  5. Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)

    Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...

  6. Luogu T7152 细胞(递推,矩阵乘法,快速幂)

    Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每 ...

  7. 【luogu P3390 矩阵快速幂】 模板

    题目链接:https://www.luogu.org/problemnew/show/P3390 首先要明白矩阵乘法是什么 对于矩阵A m*p  与  B p*n 的矩阵 得到C m*n 的矩阵 矩阵 ...

  8. Luogu P3390 【模板】矩阵快速幂

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  9. Luogu P1226 取余运算||快速幂_快速幂

    超短代码 #include<iostream> #include<cstdio> using namespace std; long long b,p,k; long long ...

随机推荐

  1. PhpStorm之配置数据库连接

    打开编辑器,找到编辑器右侧的 Database 点击 Database,点击左上角的 + ,选择Data Source ,再点击需要连接的数据库类型(因为我的数据库是MySQL,所以使用MySQL数据 ...

  2. 两种好用的清除浮动的小技巧(clearfix hack)

    方法一:使用内容生成的方式清除浮动 这种方法不能解决margin在垂直边界上的叠加问题,如果不涉及margin的边界叠加问题使用这种方法清除浮动就行了 . /* :after 选择器向选定的元素之后插 ...

  3. 解决 unity 生成 android apk read Resources

    http://www.cnblogs.com/solq/archive/2012/05/21/2511522.html TextAsset t = (TextAsset)Resources.Load( ...

  4. iOS 8 录音重放出现 OSStatus error 1685348671 / 2003334207 问题的解决办法

    许多录音类 APP 都提供录音回放功能,大家在做这类 APP 的时候也经常会遇到这个需求.当大家用以前的套路在 iOS 8 上录音的时候,在模拟器上跑得挺好的,但是一上真机就跪了,为什么?因为真机底层 ...

  5. git上如何删除已有项目

    删除fork别人的项目 由于最近想删除fork别人项目,步骤如下. 点击进入需要删除fork的项目 进入Settings选项 找到delete this repository按钮 确认是否要删除,Pl ...

  6. 基于SpringBoot+MyBatis实现一套电商系统

    项目介绍 mall项目是一套电商系统,包括前台商城系统及后台管理系统,基于SpringBoot+MyBatis实现. 前台商城系统包含首页门户.商品推荐.商品搜索.商品展示.购物车.订单流程.会员中心 ...

  7. HTTP1.1规范下载 6个文档组成

  8. Markdown - 如何给文本加下划线

    解决方法 Markdown可以和HTML的语法兼容,可以通过HTML的标签来实现效果: 写法 效果 <u>下划线</u> 下划线 这里解释下,u指的是underline下划线. ...

  9. Qt 2D绘图之五:图形视图框架的结构和坐标系统

    一.图形视图框架的结构 在前面讲的基本绘图中,我们可以自己绘制各种图形,并且控制它们.但是,如果需要同时绘制很多个相同或不同的图形,并且要控制它们的移动.检测它们的碰撞和叠加:或者我们想让自己绘制的图 ...

  10. On the way to the park Gym - 101147I 几何

    http://codeforces.com/gym/101147/problem/I I. On the way to the park time limit per test 5 seconds m ...