题目链接

题意

\(A+B\)个球排成一行,左边\(A\)个为红球,右边\(B\)个为蓝球。

最开始可以选择两个数\(s,t\),每次操作可以取左起第\(1\)或\(s\)或\(t\)个球。问有多少种不同的取球序列。

Sample

Sample Input 1

3 3

Sample Output 1

20

Explanation

There are 20 ways to give 3 red balls and 3 blue balls. It turns out that all of them are possible.

Here is an example of the operation (r stands for red, b stands for blue):

You choose s=3,t=4.

Initially, the row looks like rrrbbb.

You remove 3rd ball (r) and give it to Snuke. Now the row looks like rrbbb.

You remove 4th ball (b) and give it to Snuke. Now the row looks like rrbb.

You remove 1st ball (r) and give it to Snuke. Now the row looks like rbb.

You remove 3rd ball (b) and give it to Snuke. Now the row looks like rb.

You remove 1st ball (r) and give it to Snuke. Now the row looks like b.

You remove 1st ball (b) and give it to Snuke. Now the row is empty.

This way, Snuke receives balls in the order rbrbrb.

思路

官方题解

将剩下的球的序列转化成二维平面上的点,则取球过程为起点为\((A,B)\),终点为\((0,0)\)的路径。

显然,可以一直向左走,因为向左走就对应着取该序列的第一个元素;

但是向下走是需要满足一定的条件的,那就是红球的个数小于\(s\)或\(t\)中的某一个。

在阴影区域内可以随意向左走或向下走。

因此,可以枚举\((p,q)\),从\((A,B)\)到\((p,q)\)的路径条数可以通过预处理组合数然后\(O(1)\)算出,而从\((p,q)\)到\((0,0)\)的路径条数可以预处理出。

以\(q-1=4\)为例,

分界线为\(x=0\)时,有\(\binom{4}{0}\)种,

分界线为\(x=1\)时,有\(\binom{4}{0}+\binom{4}{1}\)种,

分界线为\(x=2\)时,有\(\binom{4}{0}+\binom{4}{1}+\binom{4}{2}\)种,

分界线为\(x=3\)时,有\(\binom{4}{0}+\binom{4}{1}+\binom{4}{2}+\binom{4}{3}\)种,

分界线为\(x=4\)时,有\(\binom{4}{0}+\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}\)种,

分界线为\(x=5\)时,有\(\binom{4}{0}+\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}\)种,

……

分界线为\(x=n(n\geq 4)\)时,有\(\binom{4}{0}+\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}\)种.

对于\((p,q)\),将分界线为\(x=0,1,2,...,p\)的情况累和,即得路径条数。

Code

参考:

#include <bits/stdc++.h>
#define maxn 4000
#define maxm maxn+10
using namespace std;
typedef long long LL;
LL temp[maxm][maxm], C[maxm][maxm];
const LL mod = 1e9+7;
LL add(LL a, LL b) { return (a+b) % mod; }
LL mul(LL a, LL b) { return (a*b) % mod; }
void init() {
for (int i = 0; i <= maxn; ++i) C[i][0] = 1;
for (int i = 1; i <= maxn; ++i) {
for (int j = 1; j <= i; ++j) C[i][j] = add(C[i-1][j], C[i-1][j-1]);
}
for (int i = 0; i <= maxn; ++i) {
temp[i][0] = C[i][0];
for (int j = 1; j <= maxn; ++j) {
temp[i][j] = add(temp[i][j-1], C[i][j]);
}
}
for (int i = 0; i <= maxn; ++i) {
for (int j = 1; j <= maxn; ++j) temp[i][j] = add(temp[i][j], temp[i][j-1]);
}
}
int main() {
init();
int a, b;
LL ans = 0;
scanf("%d%d", &a, &b);
for (int p = 0; p <= a; ++p) {
for (int q = 0; q <= b-1; ++q) {
if (p+q > a) continue;
if (q == 0) ans = add(ans, 1);
else ans = add(ans, mul(C[b-1][q], temp[q-1][p]));
}
}
printf("%lld\n", ans);
return 0;
}

Atcoder CODE FESTIVAL 2017 qual B E - Popping Balls 组合计数的更多相关文章

  1. Code Festival 2017 Qual B E Popping Balls

    传送门 神仙计数! 我的计数真的好差啊= = 不过这个题真的神仙 看了题解把整个过程在草稿纸上重写了一遍才想明白= =(一张草稿纸就没有了!!!) 计数的关键就是在于 枚举的有效性和独立性[不能重复计 ...

  2. 【题解】Popping Balls AtCoder Code Festival 2017 qual B E 组合计数

    蒟蒻__stdcall终于更新博客辣~ 一下午+一晚上=一道计数题QAQ 为什么计数题都这么玄学啊QAQ Prelude 题目链接:这里是传送门= ̄ω ̄= 下面我将分几个步骤讲一下这个题的做法,大家不 ...

  3. Atcoder CODE FESTIVAL 2017 qual B D - 101 to 010 dp

    题目链接 题意 对于一个\(01\)串,如果其中存在子串\(101\),则可以将它变成\(010\). 问最多能进行多少次这样的操作. 思路 官方题解 转化 倒过来考虑. 考虑,最终得到的串中的\(' ...

  4. 题解【AtCoder - CODE FESTIVAL 2017 qual B - D - 101 to 010】

    题目:https://atcoder.jp/contests/code-festival-2017-qualb/tasks/code_festival_2017_qualb_d 题意:给一个 01 串 ...

  5. atcoder/CODE FESTIVAL 2017 qual B/B(dfs染色判断是否为二分图)

    题目链接:http://code-festival-2017-qualb.contest.atcoder.jp/tasks/code_festival_2017_qualb_c 题意:给出一个含 n ...

  6. Atcoder CODE FESTIVAL 2017 qual C D - Yet Another Palindrome Partitioning 回文串划分

    题目链接 题意 给定一个字符串(长度\(\leq 2e5\)),将其划分成尽量少的段,使得每段内重新排列后可以成为一个回文串. 题解 分析 每段内重新排列后是一个回文串\(\rightarrow\)该 ...

  7. Atcoder CODE FESTIVAL 2017 qual C C - Inserting 'x' 回文串

    题目链接 题意 给定字符串\(s\),可以在其中任意位置插入字符\(x\). 问能否得到一个回文串,若能,需插入多少个\(x\). 思路 首先统计出现次数为奇数的字符\(cnt\). \(cnt\ge ...

  8. Atcoder CODE FESTIVAL 2017 qual B C - 3 Steps 二分图

    题目链接 题意 给定一个无向图,\(n\)个点,\(m\)条边(\(n,m\leq 1e5\)). 重复如下操作: 选择相异的两点u,v满足从点u出发走三条边恰好能到达点v.在这样的u,v点对之间添一 ...

  9. [Atcoder Code Festival 2017 Qual A Problem D]Four Coloring

    题目大意:给一个\(n\times m\)的棋盘染四种颜色,要求曼哈顿距离为\\(d\\)的两个点颜色不同.解题思路:把棋盘旋转45°,则\((x,y)<-(x+y,x-y)\).这样就变成了以 ...

随机推荐

  1. GTA5(侠盗猎车5)中文版破解版

    )中文版破解版迅雷下载地址(使用迅雷新建任务填上地址): magnet:?xt=urn:btih:65F16B126D8A656E4FC825DE204EBFAF04B070FC

  2. Js笔记-第11课

    // 第11课         作用域精解     运行期上下文,当函数执行时,会创建一个成为执行期上下文的内部对象.一个执行期上下文定义了一个函数执行时的环境,函数每次执行时对应的执行期上下文都是独 ...

  3. 01_3_创建一个Action

    01_3_创建一个Action 1. 定义一个action 具体视图的返回可以由用户自己定义的Action来决定 具体的手段是根据返回的字符串找到相应的配置项,来决定视图的内容 具体Action的实现 ...

  4. cocos2dx lua 吞噬层的触摸事件

    首先要创建一个layer,设置该层为可触摸 layer:setTouchEnabled(true) 注册触摸事件 local listener = cc.EventListenerTouchOneBy ...

  5. Redis 和缓存技术

    Redis 是什么?什么作用?优点和缺点? https://blog.csdn.net/weixin_42295141/article/details/81380633 Redis 的主要功能哨兵+复 ...

  6. VIM 编辑器 -使用详解记录

    1.什么是 vim? Vim是从 vi 发展出来的一个文本编辑器.代码补完.编译及错误跳转等方便编程的功能特别丰富,在程序员中被广泛使用.简单的来说, vi 是老式的字处理器,不过功能已经很齐全了,但 ...

  7. k8s调度的预选策略及优选函数

    scheduler调度过程:    Predicate(预选)-->Priority(优选)-->Select(选定)调度方式:    1.节点亲和性调度(NodeAffinity)使用n ...

  8. Linux菜鸟起飞之路【七】文件合并、归档和压缩

    一.文件合并操作 1.覆盖符号与追加符号 a)“>”代表将左边文件的内容覆盖右边文件的内容,如果右边文件不存在则创建这个文件 b)“>>”代表将左边文件的内容追加到右边文件中,如果右 ...

  9. 树状数组:CDOJ1583-曜酱的心意(树状数组心得)

    曜酱的心意 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 131072/131072KB (Java/Others) Description ...

  10. 异常 ndroid.view.InflateException: Binary XML file line #8: Error inflating class com.ouyang.test.MyView

    发现自定义view时出现ndroid.view.InflateException: Binary XML file line #8: Error inflating class com.ouyang. ...