环境介绍:

主服务器ip:192.168.80.128(master)  NameNode  SecondaryNameNode ResourceManager

从服务器ip:192.168.80.129(slave1)  DataNode NodeManager

从服务器ip: 192.168.80.130(slave2)  DataNode NodeManager

1.文件准备

1)在HDFS上创建文件夹

hadoop fs -mkdir /user/joe/wordcount/input

2)在本地创建文件夹

mkdir /home/chenyun/data/mapreduce

3)创建file01

cd /home/chenyun/data/mapreduce
touch file01

vi file01

往file01写入内容:

Hello World, Bye World!

4)创建file02

cd /home/chenyun/data/mapreduce
touch file02 vi file02

往file02写入内容:

Hello Hadoop, Goodbye to hadoop.

5)把本地文件file01、file02上传到hdfs的/user/joe/wordcount/input目录

hadoop fs -put /home/chenyun/data/mapreduce/file01 /user/joe/wordcount/input 

hadoop fs -put /home/chenyun/data/mapreduce/file02 /user/joe/wordcount/input

2.编写mapreduce程序

1)在Eclipse编写Mapreduce程序

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.StringUtils; public class WordCount { public static class TokenizerMapper extends
Mapper<Object, Text, Text, IntWritable> {
static enum CountersEnum {
INPUT_WORDS
} private final static IntWritable one = new IntWritable(1); private Text word = new Text();
private boolean caseSensitive;
private Set<String> patternsToSkip = new HashSet<String>(); private Configuration conf;
private BufferedReader fis; @Override
public void setup(Context context) throws IOException,
InterruptedException {
conf = context.getConfiguration();
caseSensitive = conf.getBoolean("wordcount.case.sensitive", true);
if (conf.getBoolean("wordcount.skip.patterns", false)) {
URI[] patternsURIs = Job.getInstance(conf).getCacheFiles();
for (URI patternsURI : patternsURIs) {
Path patternsPath = new Path(patternsURI.getPath());
String patternsFileName = patternsPath.getName().toString();
parseSkipFile(patternsFileName);
}
}
} private void parseSkipFile(String fileName) {
try {
fis = new BufferedReader(new FileReader(fileName));
String pattern = null;
while ((pattern = fis.readLine()) != null) {
patternsToSkip.add(pattern);
}
} catch (IOException ioe) {
System.err
.println("Caught exception while parsing the cached file '"
+ StringUtils.stringifyException(ioe));
}
} @Override
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
String line = (caseSensitive) ? value.toString() : value.toString()
.toLowerCase();
for (String pattern : patternsToSkip) {
line = line.replaceAll(pattern, "");
}
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
Counter counter = context.getCounter(
CountersEnum.class.getName(),
CountersEnum.INPUT_WORDS.toString());
counter.increment(1);
}
} } public static class IntSumReducer extends
Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
GenericOptionsParser optionParser = new GenericOptionsParser(conf, args);
String[] remainingArgs = optionParser.getRemainingArgs();
if ((remainingArgs.length != 2) && (remainingArgs.length != 4)) {
System.err
.println("Usage: wordcount <in> <out> [-skip skipPatternFile]");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); List<String> otherArgs = new ArrayList<String>();
for (int i = 0; i < remainingArgs.length; ++i) {
if ("-skip".equals(remainingArgs[i])) {
job.addCacheFile(new Path(remainingArgs[++i]).toUri());
job.getConfiguration().setBoolean("wordcount.skip.patterns",
true);
} else {
otherArgs.add(remainingArgs[i]);
}
}
FileInputFormat.addInputPath(job, new Path(otherArgs.get(0)));
FileOutputFormat.setOutputPath(job, new Path(otherArgs.get(1))); System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

2)导出mapreduce.jar

3) 上传到master的目录

/home/chenyun/project/mapreduce

3.运行wordCount

hadoop jar /home/chenyun/project/mapreduce/mapreduce.jar com.accp.mapreduce.WordCount /user/joe/wordcount/input /user/joe/wordcount/output

4)查看运行结果

hadoop fs -cat /user/joe/wordcount/output/part-r-00000

=======================================================================================================================

4.过滤不需要统计的字符

1)在本地创建/home/chenyun/data/mapreduce/patterns.txt ,在文件里加入

\.
\,
\!
to

2)把文件上传到hdfs上

hadoop fs -put /home/chenyun/data/mapreduce/patterns.txt /user/joe/wordcount

3)运行

hadoop jar /home/chenyun/project/mapreduce/mapreduce.jar com.accp.mapreduce.WordCount -Dwordcount.case.sensitive=true /user/joe/wordcount/input /user/joe/wordcount/output1 -skip /user/joe/wordcount/patterns.txt

4)查看运行结果

hadoop fs -cat /user/joe/wordcount/output1/part-r-00000

======================================================================================================================

5.忽略大小写,进行统计

1)运行

hadoop jar /home/chenyun/project/mapreduce/mapreduce.jar com.accp.mapreduce.WordCount -Dwordcount.case.sensitive=false /user/joe/wordcount/input /user/joe/wordcount/output5 -skip /user/joe/wordcount/patterns.txt

2)查看运行结果

hadoop fs -cat /user/joe/wordcount/output5/part-r-00000

Hadoop实战-MapReduce之WordCount(五)的更多相关文章

  1. hadoop程序MapReduce之WordCount

    需求:统计一个文件中所有单词出现的个数. 样板:word.log文件中有hadoop hive hbase hadoop hive 输出:hadoop 2 hive 2 hbase 1 MapRedu ...

  2. Hadoop实战-MapReduce之max、min、avg统计(六)

    1.数据准备: Mike,35 Steven,40 Ken,28 Cindy,32 2.预期结果 Max 40 Min 28 Avg      33 3.MapReduce代码如下 import ja ...

  3. Hadoop实战-MapReduce之倒排索引(八)

    倒排索引 (就是key和Value对调的显示结果) 一.需求:下面是用户播放音乐记录,统计歌曲被哪些用户播放过 tom        LittleApple jack       YesterdayO ...

  4. Hadoop实战-MapReduce之分组(group-by)统计(七)

    1.数据准备 使用MapReduce计算age.txt中年龄最大.最小.均值name,min,max,countMike,35,20,1Mike,5,15,2Mike,20,13,1Steven,40 ...

  5. Hadoop实战3:MapReduce编程-WordCount统计单词个数-eclipse-java-ubuntu环境

    之前习惯用hadoop streaming环境编写python程序,下面总结编辑java的eclipse环境配置总结,及一个WordCount例子运行. 一 下载eclipse安装包及hadoop插件 ...

  6. Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码

    Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本文主要是记录一写我在学习MapReduce时的一些 ...

  7. 王家林的“云计算分布式大数据Hadoop实战高手之路---从零开始”的第十一讲Hadoop图文训练课程:MapReduce的原理机制和流程图剖析

    这一讲我们主要剖析MapReduce的原理机制和流程. “云计算分布式大数据Hadoop实战高手之路”之完整发布目录 云计算分布式大数据实战技术Hadoop交流群:312494188,每天都会在群中发 ...

  8. 升级版:深入浅出Hadoop实战开发(云存储、MapReduce、HBase实战微博、Hive应用、Storm应用)

          Hadoop是一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储.Hadoop实现了一个分布式文件系 ...

  9. 三.hadoop mapreduce之WordCount例子

    目录: 目录见文章1 这个案列完成对单词的计数,重写map,与reduce方法,完成对mapreduce的理解. Mapreduce初析 Mapreduce是一个计算框架,既然是做计算的框架,那么表现 ...

随机推荐

  1. 标准C程序设计七---40

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  2. 从反汇编看待C++ new

    首先来看最简单的new操作 int main() { int *temp = new int; delete temp; } 反汇编结果:调用了operator new 00311C9E push 4 ...

  3. dedecms--会员信息导出excel表格

    1:在dede/templets下面的member_main.htm,在全选按钮那里添加一个导出excel按钮:代码如下: <a href="toexcel.php" cla ...

  4. AC日记——Weird Rounding Codeforces 779b

    B. Weird Rounding time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  5. iOS 总结网页常用的东西

    webView与js交互常用JS语句::: 1. //禁用用户选择 [self.webView stringByEvaluatingJavaScriptFromString:@"docume ...

  6. js-随机生成16进制颜色

    <body onload="color()"></body> <script> function color(){ 方法一: document. ...

  7. HDU 5046 Airport【DLX重复覆盖】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5046 题意: 给定n个城市的坐标,要在城市中建k个飞机场,使城市距离最近的飞机场的最长距离最小,求这 ...

  8. Java中HashMap的初始容量设置

    根据阿里巴巴Java开发手册上建议HashMap初始化时设置已知的大小,如果不超过16个,那么设置成默认大小16: 集合初始化时, 指定集合初始值大小. 说明: HashMap使用HashMap(in ...

  9. 为VLC增加在线字幕插件VLSub

    VLC的在在线字幕插件VLSub,官网:https://github.com/exebetche/vlsub. 原理是通过搜索全球最大的字幕网站https://www.opensubtitles.or ...

  10. [转] 常用SQL查询语句

    sunada  的原文地址 常用SQL查询语句 一.简单查询语句 1. 查看表结构 SQL>DESC emp; 2. 查询所有列 SQL>SELECT * FROM emp; 3. 查询指 ...