[NOIP2009] $Hankson$ 的趣味题 (数论,gcd)
题目链接
Solution
此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举...
只有50分... 被自己蠢哭...
结论比较浅显:
1.对于两个正整数\(a\),\(b\),设 \(gcd(a,b)=k\),则存在\(gcd(a/k,b/k)=1\).
也就是说 \(x=k_1*a_1\),\(a_0=k_2*a_1\),它们最大公约数为\(a_1\),那么要求 \(k_1\) 与 \(k_2\) 必须互质,否则它们的最大公约数会是 \(gcd(k_1,k_2)*a_1\).
2.对于两个正整数\(a\),\(b\),设\(lcm(a,b)=k\),则存在\(gcd(k/a,k/b)=1\).
比较浅显,可以由 \(a*b=gcd(a,b)*lcm(a,b)\) 推出来.
然后通过分析题意结论,便可以分析出 \(x\) 满足 \(x\) 是 \(b_1\) 的因子,并且满足是 \(a_1\) 的倍数.
所以我们直接 \(\sqrt{b_1}\) 枚举其因子,并且判断是否满足上述条件即可.
### Code
### 100 分做法
```cpp
#include
#define ll long long
using namespace std;
ll n,a1,a0,b0,b1;
ll gcd(ll x,ll y)
{
if(y==0)return x;
else return gcd(y,x%y);
}
int main()
{
scanf("%lld",&n);
while(n--)
{
scanf("%lld%lld%lld%lld",&a0,&a1,&b0,&b1);
if(b1%a1!=0){printf("0\n");continue;}
ll ans=0,maxx=sqrt(b1);
for(int x=1;x<=maxx;x++)
{
if(b1%x!=0)continue;
if(x%a10)
if(gcd(b1/b0,b1/x)1)
if(gcd(x/a1,a0/a1)1)
ans++;
if(b1/xx)continue;
ll y=b1/x;
if(y%a10)
if(gcd(b1/b0,b1/y)1)
if(gcd(y/a1,a0/a1)==1)
ans++;
}
printf("%lld\n",ans);
}
}
### 50 分做法(暴力枚举 $a_1$ 的倍数,然后判断)
```cpp
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll n,a1,a0,b0,b1;
ll gcd(ll x,ll y)
{
if(y==0)return x;
else return gcd(y,x%y);
}
int main()
{
scanf("%lld",&n);
while(n--)
{
scanf("%lld%lld%lld%lld",&a0,&a1,&b0,&b1);
if(b1%a1!=0){printf("0\n");continue;}
ll tt=0,ans=0;
while(1)
{
tt++;
if(tt*a1>b1)break;
ll x=tt*a1;
if(b1%x!=0)continue;
if(gcd(x,a0)!=a1)continue;
if(x*b0!=gcd(b0,x)*b1)continue;
ans++;
}
printf("%lld\n",ans);
}
}
[NOIP2009] $Hankson$ 的趣味题 (数论,gcd)的更多相关文章
- 1172 Hankson 的趣味题[数论]
1172 Hankson 的趣味题 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Descrip ...
- CodeForces 992B Nastya Studies Informatics + Hankson的趣味题(gcd、lcm)
http://codeforces.com/problemset/problem/992/B 题意: 给你区间[l,r]和x,y 问你区间中有多少个数对 (a,b) 使得 gcd(a,b)=x lc ...
- 【Luogu】P1072Hankson的趣味题(gcd)
这题真TM的趣味. 可以说我的动手能力还是不行,想到了算法却写不出来.以后说自己数论会GCD的时候只好虚了…… 我们首先这么想. x与a0的最大公约数为a1,那么我们把x/=a1,a0/=a1之后,x ...
- 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...
- P1072 Hankson 的趣味题[数论]
题目描述 Hanks 博士是 BT(Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了 ...
- 洛谷P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- 「NOIP2009」Hankson 的趣味题
Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tec ...
- 算法训练 Hankson的趣味题
算法训练 Hankson的趣味题 时间限制:1.0s 内存限制:64.0MB 问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Han ...
- 1172 Hankson 的趣味题
1172 Hankson 的趣味题 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Descrip ...
随机推荐
- CMDB 数据加密 最终整合API验证+AES数据加密
当CMDB运行在内网的时候,经过API验证的三关是没有问题的,但是如果运行在外网,有一个问题是,黑客截取后的访问速度比客户端快的时候还会造成数据泄露.为了解决这个问题,就要对数据进行加密 RSA加密 ...
- eubacteria|endosymbiosis|基因转移
5.11线粒体和叶绿体是通过内共生进化而来的 初始细胞俘获有功能的真细菌(eubacteria)进入细胞内,该细菌逐渐演化为细胞器,这种现象称为内共生(endosymbiosis),所以该细胞器携带细 ...
- JS实用技术
JS外部引用其他文件(建议) <script src="myScript1.js"></script> JS输出显示方式 使用 window.alert() ...
- [BZOJ] 1907: 树的路径覆盖
一个点必然被路径覆盖,根据是否为路径的端点分类 \(f[x][0]\)表示以\(x\)为根的子树,\(x\)不为端点的最小路径覆盖数 \(f[x][1]\)表示以\(x\)为根的子树,\(x\)为一条 ...
- 【windows】win7 sp1 系统语言中英文切换
注:Windows 7 Ultimate and Windows 7 Enterprise (旗舰版和企业版) 可以直接在控制面板/地区和语言中修改显示语言,其他系统不行 进入网站下载相关的MUI包安 ...
- ubuntu 16.04下如何打造 sublime python编程环境
一.安装python3 ubuntu自身是安装python2的,例如在ubuntu 16.04中安装的就是python2.7.但我想在python3的环境下进行开发所以就要安装python3. ...
- 如何提高UDP的可靠性
TCP是通过确认机制和超时重传机制实现可靠传输 UDP UDP它不属于连接型协议,因而具有资源消耗小,处理速度快的优点,所以通常音频.视频和普通数据在传送时使用UDP较多,因为它们即使偶尔丢失一两个数 ...
- 【ZABBIX】Linux下安装ZABBIX
说明:搭建ZABBIX所需的软件列表为:RHEL6.5+Nginx+MySQL+PHP+ZABBIX. 一.软件包 软件名称 版本 下载地址 nginx 1.10.3 http://nginx.org ...
- 关于freetype在安装中的遇到的问题
本人电脑配置的是Anconda环境+pycharm2017.2.2 comuniity,每次安装什么包就是直接pip install 的,但是这次在安装freetype的安装中却遇到了麻烦. 具体是在 ...
- 【Netty】NIO框架Netty入门
Netty介绍 Netty是由JBOSS提供的一个java开源框架.Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速开发高性能.高可靠性的网络服务器和客户端程序. 也就是说,Netty ...