bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 3394 Solved: 1493
[Submit][Status][Discuss]
Description
一个无向连通图,顶点从1编号到N,边从1编号到M。
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
Input
第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。
Output
仅包含一个实数,表示最小的期望值,保留3位小数。
Sample Input
2 3
1 2
1 3
Sample Output
HINT
Source
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 507
#define M 250007 using namespace std; int n,m;
int U[M],V[M],d[N];
double a[N][N],x[N],w[M],ans; void Gauss(int n,int m)
{
int i,j,k;
for(i=;i<m;i++)
{
for(k=i,j=i+;j<=n;j++)if(fabs(a[k][i])<fabs(a[j][i]))k=j;
if(i!=k)for(j=i;j<=m;j++)swap(a[i][j],a[k][j]);
for(j=i+;j<=n;j++)
{
double rate=a[j][i]/a[i][i];
for(k=i;k<=m;k++)a[j][k]-=a[i][k]*rate;
}
}
for(i=m-;i;i--)
{
for(j=i+;j<m;j++)a[i][m]-=a[i][j]*x[j];
x[i]=a[i][m]/a[i][i];
}
}
int main()
{
int i; scanf("%d%d",&n,&m);
for(i=;i<=m;i++)
{
scanf("%d%d",&U[i],&V[i]);
d[U[i]]++,d[V[i]]++;
}
for(i=;i<n;i++)a[i][i]=-;
for(i=;i<=m;i++)
{
a[U[i]][V[i]]+=1.0/d[V[i]];
a[V[i]][U[i]]+=1.0/d[U[i]];
}
for(i=;i<=n;i++)a[n][i]=;
a[][n+]=-,a[n][n]=;
Gauss(n,n+);
for(i=;i<=m;i++)w[i]=x[U[i]]/d[U[i]]+x[V[i]]/d[V[i]];
sort(w+,w+m+);
for(i=;i<=m;i++)ans+=(m-i+)*w[i];
printf("%.3lf\n",ans);
}
bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元的更多相关文章
- BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元
[BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...
- BZOJ3143: [Hnoi2013]游走(期望DP 高斯消元)
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3597 Solved: 1618[Submit][Status][Discuss] Descript ...
- bzoj3143 游走 期望dp+高斯消元
题目传送门 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得 ...
- 2018.09.23 bzoj3143: [Hnoi2013]游走(dp+高斯消元)
传送门 显然只需要求出所有边被经过的期望次数,然后贪心把边权小的边定城大的编号. 所以如何求出所有边被经过的期望次数? 显然这只跟边连接的两个点有关. 于是我们只需要求出两个点被经过的期望次数. 对于 ...
- BZOJ 3143 [Hnoi2013]游走 ——概率DP
概率DP+高斯消元 与博物馆一题不同的是,最终的状态是有一定的概率到达的,但是由于不能从最终状态中出来,所以最后要把最终状态的概率置为0. 一条边$(x,y)$经过的概率是x点的概率$*x$到$y$的 ...
- 【洛谷3232】[HNOI2013] 游走(贪心+高斯消元)
点此看题面 大致题意: 一个无向连通图,小\(Z\)从\(1\)号顶点出发,每次随机选择某条边走到下一个顶点,并将\(ans\)加上这条边的编号,走到\(N\)号顶点时结束.请你对边进行编号,使总分期 ...
- bzoj3143: [Hnoi2013]游走(贪心+高斯消元)
考虑让总期望最小,那么就是期望经过次数越多的边贪心地给它越小的编号. 怎么求每条边的期望经过次数呢?边不大好算,我们考虑计算每个点的期望经过次数f[x],那么一条边的期望经过次数就是f[x]/d[x] ...
- BZOJ 4820 [Sdoi2017]硬币游戏 ——期望DP 高斯消元
做法太神了,理解不了. 自己想到的是建出AC自动机然后建出矩阵然后求逆计算,感觉可以过$40%$ 用一个状态$N$表示任意一个位置没有匹配成功的概率和. 每种匹配不成功的情况都是等价的. 然后我们强制 ...
随机推荐
- 在DataGridView控件中显示图片
实现效果: 知识运用: DataGridView控件的DataSource属性 实现代码: private void Form1_Load(object sender, EventArgs e) { ...
- IntelliJ IDEA java设置程序运行时内存
Run/Edit Configurations Configuration/VM options 例如:设置运行内存为:-Xmx3m -Xms3m
- docker安装gitlab-ce
pull and run docker pull docker.io/gitlab/gitlab-ce docker run -itd --name gitlab -p 10080:80 gitlab ...
- tcp 高性能服务, netty,mqtt
1. io 线程不要有比较长的服务. 全部异步化. [1] netty 权威指南上只是说业务复杂时派发到业务线程池种. 共用的线程池最好都轻量. 多层线程池后, 下层的可以进行隔离. 这个是 mqtt ...
- iOS 骰子战争 Dice Wars
占坑 这个游戏之前在网页端玩过,App Store 上没有搜到特别好的,想自己做个类似的iOS APP 游戏 目测实现难度适中,可玩性较高
- linux 使用wget下载https连接地址cannot verify github.com's certificate
使用linux的wget下载时候会出现网站没有证书警告的问题, 例如下载git时,可以使用wget https://github.com/git/git/archive/v2.3.0.zip --no ...
- ReactiveCocoa入门-part1
作为一个iOS开发者,你写的每一行代码几乎都是在响应某个事件,例如按钮的点击,收到网络消息,属性的变化(通过KVO)或者用户位置的变化(通过CoreLocation).但是这些事件都用不同的方式来处理 ...
- 【windows】【md5】查看文件的md5值
certutil -hashfile filename MD5 certutil -hashfile filename SHA1 certutil -hashfile filename SHA256 ...
- 树莓派编译ncnn
1.从github上下载ncnn git clone --recursive https://github.com/Tencent/ncnn 2.在ncnn根目录下创建build目录,安装cmake编 ...
- 《零基础入门学习Python》【第一版】视频课后答案第002讲
测试题答案: 0. 什么是BIF?BIF 就是 Built-in Functions,内置函数.为了方便程序员快速编写脚本程序(脚本就是要编程速度快快快!!!),Python 提供了非常丰富的内置函数 ...