[luoguP3355] 骑士共存问题(二分图最大独立集)
模型
二分图最大独立集,转化为二分图最大匹配,从而用最大流解决。
实现
首先把棋盘黑白染色,使相邻格子颜色不同。
把所有可用的黑色格子看做二分图X集合中顶点,可用的白色格子看做Y集合顶点。
建立附加源S汇T,从S向X集合中每个顶点连接一条容量为1的有向边,从Y集合中每个顶点向T连接一条容量为1的有向边。
从每个可用的黑色格子向骑士一步能攻击到的可用的白色格子连接一条容量为无穷大的有向边。
求出网络最大流,要求的结果就是可用格子的数量减去最大流量。
分析
用网络流的方法解决棋盘上的问题,一般都要对棋盘黑白染色,使之成为一个二分图。放尽可能多的不能互相攻击的骑士,就是一个二分图最大独立集问题。有关二分图最大独立集问题,更多讨论见《最小割模型在信息学竞赛中的应用》作者胡伯涛。
该题规模比较大,需要用效率较高的网络最大流算法解决。(使用Dinic+当前弧优化)
——代码
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define INF 1e9
#define N 1000001
#define min(x, y) ((x) < (y) ? (x) : (y)) int n, m, cnt, tot, sum, s, t;
int map[][], head[N], to[N], val[N], next[N], dis[N], cur[N];
int dx[] = {-, -, , , , , -, -},
dy[] = {, , , , -, -, -, -}; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline void add2(int x, int y, int z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
} inline void add(int x, int y, int z)
{
add2(x, y, z);
add2(y, x, );
} inline bool bfs()
{
int i, u, v;
std::queue <int> q;
memset(dis, -, sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == -)
{
dis[v] = dis[u] + ;
if(v == t) return ;
q.push(v);
}
}
}
return ;
} inline int dfs(int u, int maxflow)
{
if(u == t) return maxflow;
int v, d, ret = ;
for(int &i = cur[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == dis[u] + )
{
d = dfs(v, min(val[i], maxflow - ret));
ret += d;
val[i] -= d;
val[i ^ ] += d;
if(ret == maxflow) return ret;
}
}
return ret;
} int main()
{
int i, j, k, x, y;
n = read();
m = read();
s = , t = n * n + ;
memset(head, -, sizeof(head));
for(i = ; i <= m; i++)
{
x = read();
y = read();
map[x][y] = -;
}
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
if(!map[i][j])
{
map[i][j] = ++tot;
if((i + j) & ) add(s, tot, );
else add(tot, t, );
}
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
if(map[i][j] ^ - && (i + j) & )
for(k = ; k < ; k++)
{
x = i + dx[k];
y = j + dy[k];
if(x >= && x <= n && y >= && y <= n && map[x][y] ^ -) add(map[i][j], map[x][y], INF);
}
while(bfs())
{
for(i = s; i <= t; i++) cur[i] = head[i];
sum += dfs(s, INF);
}
printf("%d\n", tot - sum);
return ;
}
[luoguP3355] 骑士共存问题(二分图最大独立集)的更多相关文章
- 洛谷P3355 骑士共存问题 二分图_网络流
Code: #include<cstdio> #include<cstring> #include<queue> #include<vector> #i ...
- 【Codevs1922】骑士共存问题(最小割,二分图最大独立集转最大匹配)
题意: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个 ...
- 「CODVES 1922 」骑士共存问题(二分图的最大独立集|网络流)&dinic
首先是题目链接 http://codevs.cn/problem/1922/ 结果发现题目没图(心情复杂 然后去网上扒了一张图 大概就是这样了. 如果把每个点和它可以攻击的点连一条边,那问题就变成了 ...
- Cogs 746. [网络流24题] 骑士共存(最大独立集)
[网络流24题] 骑士共存 ★★☆ 输入文件:knight.in 输出文件:knight.out 简单对比 时间限制:1 s 内存限制:128 MB 骑士共存问题 «问题描述: 在一个n*n个方格的国 ...
- COGS746. [网络流24题] 骑士共存
骑士共存问题«问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志 ...
- 【刷题】LOJ 6226 「网络流 24 题」骑士共存问题
题目描述 在一个 \(\text{n} \times \text{n}\) 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的 \(\t ...
- P3355 骑士共存问题
P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...
- BZOJ3175:[TJOI2013]攻击装置(二分图最大独立集)
Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2), ...
- [网络流24题] 骑士共存(cogs 746)
骑士共存问题«问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志 ...
随机推荐
- 第三章 DOM的基本
节点分为不同的类型:元素节点.属性节点和文本节点 getElementById()方法 这个方法将返回一个与那个有着给定id属性值的元素节点相对应的对象.注意大小写.该方法只有一个参数.这个参数也就是 ...
- 动态代理--Cglib
JDK 的Proxy 实现,需要代理对象实现接口: package com.utils; import java.lang.reflect.InvocationHandler; import java ...
- 面向对象OO第一单元三次作业总结
(一)第一单元的作业围绕着多项式的求导,从简单到复杂,主要的要求是 作业一:只有两种格式的因子:带符号整数(+02)和幂函数(x^+02). 作业二:在作业一的基础上添加了:sin(x)和cos(x) ...
- TCP、UDP的区别
TCP(传输控制协议): 1)提供IP环境下的数据可靠传输(一台计算机发出的字节流会无差错的发往网络上的其他计算机,而且计算机A接收数据包的时候,也会向计算机B回发数据包,这也会产生部分通信量),有效 ...
- 关于OnTimer()使用
OnTimer()其实是用来响应WM_TIMER消息的,其实OnTimer()就是一个回调函数,不过是系统默认的,当用户使用SetTimer()函数设定一个定时器的时候,只要是第三个参数为NULL,则 ...
- Keras预训练模型下载后保存路径
https://blog.csdn.net/xiaohuihui1994/article/details/83340080
- 【前端_js】JavaScript知识点总结
1.JavaScript的定义及特性 1.1.定义 javascript是运行在客户端的一种直译式脚本语言(程序在运行过程中逐行进行解释),它的解释器被称为JavaScript引擎,为浏览器的一部分. ...
- LeetCode(120) Triangle
题目 Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacen ...
- POJ:3228-Gold Transportation(要求最小生成树最大边最小)
Gold Transportation Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3079 Accepted: 1101 D ...
- 图上两点之间的第k最短路径的长度 ACM-ICPC 2018 沈阳赛区网络预赛 D. Made In Heaven
131072K One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. Howe ...