Python 真火来学习一下,先来看一个库 NumPy。NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

1. 读取文件

numpy.genfromtxt() 用于读取 txt 文件,其中传入的参数依次为:

  1. 需要读取的 txt 文件位置,此处文件与程序位于同一目录下
  2. 分割的标记
  3. 转换类型,如果文件中既有文本类型也有数字类型,就先转成文本类型

help(numpy.genfromtxt)用于查看帮助文档:
如果不想看 API 可以启动一个程序用 help 查看指令的详细用法

 
 
 
 
 
 

Python

 
1
2
3
4
5
6
import numpy
 
world_alcohol = numpy.genfromtxt("world_alcohol.txt", delimiter=",",dtype=str)
print(type(world_alcohol))
print(world_alcohol)
print(help(numpy.genfromtxt))

2. 构造 ndarray

numpy.array()构造 ndarray

numpy.array()中传入数组参数,可以是一维的也可以是二维三维的。numpy 会将其转变成 ndarray 的结构。

 
 
 
 
 

Python

 
1
2
vector = numpy.array([1,2,3,4])
matrix = numpy.array([[1,2,3],[4,5,6]])

传入的参数必须是同一结构,不是同一结构将发生转换。

 
 
 
 
 

Python

 
1
2
3
vector = numpy.array([1,2,3,4])
 
array([1, 2, 3, 4])

均为 int 类型

 
 
 
 
 

Python

 
1
2
3
vector = numpy.array([1,2,3,4.0])
 
array([ 1.,  2.,  3.,  4.])

转为浮点数类型

 
 
 
 
 

Python

 
1
2
3
vector = numpy.array([1,2,'3',4])
 
array(['1', '2', '3', '4'],dtype='<U21')

转为字符类型

利用 .shape 查看结构

能够了解 array 的结构,debug 时通过查看结构能够更好地了解程序运行的过程。

 
 
 
 
 

Python

 
1
2
3
4
print(vector.shape)
print(matrix.shape)
(4,)
(2, 3)

利用 dtype 查看类型

 
 
 
 
 

Python

 
1
2
3
4
vector = numpy.array([1,2,3,4])
vector.dtype
 
dtype('int64')

ndim 查看维度

一维

 
 
 
 
 

Python

 
1
2
3
4
vector = numpy.array([1,2,3,4])
vector.ndim
 
1

二维

 
 
 
 
 

Python

 
1
2
3
4
5
6
matrix = numpy.array([[1,2,3],
                      [4,5,6],
                     [7,8,9]])
matrix.ndim
 
2

size 查看元素数量

 
 
 
 
 

Python

 
1
2
matrix.size
9

3. 获取与计算

numpy 能使用切片获取数据

 
 
 
 
 

Python

 
1
2
3
matrix = numpy.array([[1,2,3],
                      [4,5,6],
                     [7,8,9]])

根据条件获取

numpy 能够依次比较 vector 和元素之间是否相同

 
 
 
 
 

Python

 
1
2
3
4
vector = numpy.array([5, 10, 15, 20])
vector == 10
 
array([False,  True, False, False], dtype=bool)

根据返回值获取元素

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
vector = numpy.array([5, 10, 15, 20])
equal_to_ten = (vector == 10)
print(equal_to_ten)
print(vector[equal_to_ten])
 
[False  True False False]
[10]

进行运算之后获取

 
 
 
 
 

Python

 
1
2
vector = numpy.array([5, 10, 15, 20])
equal_to_ten_and_five = (vector == 10) & (vector == 5)
 
 
 
 
 

Python

 
1
2
vector = numpy.array([5, 10, 15, 20])
equal_to_ten_or_five = (vector == 10) | (vector == 5)

类型转换

将整体类型进行转换

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
vector = numpy.array([5, 10, 15, 20])
print(vector.dtype)
vector = vector.astype(str)
print(vector.dtype)
 
int64
<U21

求和

sum() 能够对 ndarray 进行各种求和操作,比如分别按行按列进行求和

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
matrix = numpy.array([[1,2,3],
                      [4,5,6],
                     [7,8,9]])
print(matrix.sum())
print(matrix.sum(1))
print(matrix.sum(0))
 
45
[ 6 15 24]
[12 15 18]

sum(1) 是 sum(axis=1)) 的缩写,1表示按照 x轴方向求和,0表示按照y轴方向求和

4. 常用函数

reshape

生成从 0-14 的 15 个数字,使用 reshape(3,5) 将其构造成一个三行五列的 array。

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
import numpy as np
arr = np.arange(15).reshape(3, 5)
arr
 
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

zeros

生成指定结构的默认为 0. 的 array

 
 
 
 
 

Python

 
1
2
3
4
5
np.zeros ((3,4))
 
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])

ones

生成一个三维的 array,通过 dtype 指定类型

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
np.ones( (2,3,4), dtype=np.int32 )
 
array([[[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]],
 
       [[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]]])

range

指定范围和数值间的间隔生成 array,注意范围包左不包右

 
 
 
 
 

Python

 
1
2
3
np.arange(0,10,2)
 
array([0, 2, 4, 6, 8])

random 随机数

生成指定结构的随机数,可以用于生成随机权重

 
 
 
 
 

Python

 
1
2
3
4
np.random.random((2,3))
 
array([[ 0.86166627,  0.37756207,  0.94265883],
       [ 0.9768257 ,  0.96915312,  0.33495431]])

5. ndarray 运算

元素之间依次相减相减

 
 
 
 
 

Python

 
1
2
3
4
5
a = np.array([10,20,30,40])
b = np.array(4)
 
a - b
array([ 6, 16, 26, 36])

乘方

 
 
 
 
 

Python

 
1
2
a**2
array([ 100,  400,  900, 1600])

开根号

 
 
 
 
 

Python

 
1
2
3
4
np.sqrt(B)
 
array([[ 1.41421356,  0.        ],
       [ 1.73205081,  2.        ]])

e 求方

 
 
 
 
 

Python

 
1
2
3
4
np.exp(B)
 
array([[  7.3890561 ,   1.        ],
       [ 20.08553692,  54.59815003]])

向下取整

 
 
 
 
 

Python

 
1
2
3
4
5
a = np.floor(10*np.random.random((2,2)))
a
 
array([[ 0.,  0.],
       [ 3.,  6.]])

行列变换

 
 
 
 
 

Python

 
1
2
3
4
a.T
 
array([[ 0.,  3.],
       [ 0.,  6.]])

变换结构

 
 
 
 
 

Python

 
1
2
3
4
a.resize(1,4)
a
 
array([[ 0.,  0.,  3.,  6.]])

6. 矩阵运算

矩阵之间的运算

 
 
 
 
 

Python

 
1
2
3
4
A = np.array( [[1,1],
               [0,1]] )
B = np.array( [[2,0],
               [3,4]] )

对应位置一次相乘

 
 
 
 
 

Python

 
1
2
3
4
A*B
 
array([[2, 0],
       [0, 4]])

矩阵乘法

 
 
 
 
 

Python

 
1
2
3
4
5
print (A.dot(B))
print(np.dot(A,B))
 
[[5 4]
[3 4]]

横向相加

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
a = np.floor(10*np.random.random((2,2)))
b = np.floor(10*np.random.random((2,2)))
 
print(a)
print(b)
print(np.hstack((a,b)))
 
[[ 2.  3.]
[ 9.  3.]]
[[ 8.  1.]
[ 0.  0.]]
[[ 2.  3.  8.  1.]
[ 9.  3.  0.  0.]]

纵向相加

 
 
 
 
 

Python

 
1
2
3
4
5
6
print(np.vstack((a,b)))
 
[[ 2.  3.]
[ 9.  3.]
[ 8.  1.]
[ 0.  0.]]

矩阵分割

 
 
 
 
 

Python

 
1
2
3
4
#横向分割
print( np.hsplit(a,3))
#纵向风格
print(np.vsplit(a,3))

7. 复制的区别

地址复制

通过 b = a 复制 a 的值,b 与 a 指向同一地址,改变 b 同时也改变 a。

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
a = np.arange(12)
b = a
print(a is b)
 
print(a.shape)
print(b.shape)
b.shape = (3,4)
print(a.shape)
print(b.shape)
 
True
(12,)
(12,)
(3, 4)
(3, 4)

复制值

通过 a.view() 仅复制值,当对 c 值进行改变会改变 a 的对应的值,而改变 c 的 shape 不改变 a 的 shape

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
a = np.arange(12)
c = a.view()
print(c is a)
 
c.shape = 2,6
c[0,0] = 9999
 
print(a)
print(c)
 
False
[9999    1    2    3    4    5    6    7    8    9   10   11]
[[9999    1    2    3    4    5]
[   6    7    8    9   10   11]]

完整拷贝

a.copy() 进行的完整的拷贝,产生一份完全相同的独立的复制

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
a = np.arange(12)
c = a.copy()
print(c is a)
 
c.shape = 2,6
c[0,0] = 9999
 
print(a)
print(c)
 
False
[ 0  1  2  3  4  5  6  7  8  9 10 11]
[[9999    1    2    3    4    5]
[   6    7    8    9   10   11]]

Numpy 小结的更多相关文章

  1. numpy小结

    <python数据科学>笔记  在线版地址:https://github.com/jakevdp/PythonDataScienceHandbook 1.常用np简写 import num ...

  2. numpy小结(一)

    1.np.zero(10)     创建一个包含10个元素的一维数组 np.ones((10,10))     创建一个包含10*10个元素1的二维数组 2.np.arange(10,50)      ...

  3. python 基础及资料汇总

    Python 包.模块.类以及代码文件和目录的一种管理方案     Numpy 小结   用 Python 3 的 async / await 做异步编程  K-means 在 Python 中的实现 ...

  4. numpy用法小结

    前言 个人感觉网上对numpy的总结感觉不够详尽细致,在这里我对numpy做个相对细致的小结吧,在数据分析与人工智能方面会有所涉及到的东西在这里都说说吧,也是对自己学习的一种小结! numpy用法的介 ...

  5. Numpy 用法小结

    1.  asarray 函数 可以将输入数据转化为矩阵格式. 输入数据可以是(列表,元组,列表的列表,元组的元组,元组的列表等这些数组形式). >>> asarray([(1,2,3 ...

  6. numpy.random模块用法小结

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.r ...

  7. scikit-learn随机森林调参小结

    在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...

  8. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  9. scikit-learn Adaboost类库使用小结

    在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做 ...

随机推荐

  1. poj 2932 Coneology (扫描线)

    题意 平面上有N个两两不相交的圆,求全部最外层的,即不被其它圆包括的圆的个数并输出 思路 挑战程序竞赛P259页 代码 /* ************************************* ...

  2. C 标准库 - <errno.h>

    C 标准库 - <errno.h> 简介 C 标准库的 errno.h 头文件定义了整数变量 errno,它是通过系统调用设置的,在错误事件中的某些库函数表明了什么发生了错误.该宏扩展为类 ...

  3. php性能监控扩展xhprof

    XHProf是facebook开源出来的一个php轻量级的性能分析工具,跟Xdebug类似,但性能开销更低,还可以用在生产环境中,也可以由程序开 关来控制是否进行profile.总体来说是个不错的工具 ...

  4. mysql性能优化-慢查询分析、优化索引和配置 MySQL索引介绍

    MySQL索引介绍 聚集索引(Clustered Index)----叶子节点存放整行记录辅助索引(Secondary Index)----叶子节点存放row identifier-------Inn ...

  5. C#文件操作与编程

    一:驱动器System.IO 软盘,优盘,光盘,硬盘 DriveInfo/DriveType DriveInfo:确定有关驱动器的信息:盘符,类型,可用空间 DriveType:确定DriveInfo ...

  6. 基于Redis缓存的Session共享测试(转)

    本机ip为192.168.1.101 1.准备测试环境 两个Tomcat 在Eclipse中新建2个Servers,指定对应的Tomcat,端口号错开. Tomcat1(18005.18080.180 ...

  7. 自己动手写CPU之第七阶段(5)——流水线暂停机制的设计与实现

    将陆续上传本人写的新书<自己动手写CPU>,今天是第28篇.我尽量每周四篇 China-pub的预售地址例如以下(有文件夹.内容简单介绍.前言): http://product.china ...

  8. ruby on rails模拟HTTP请求错误发生:end of file reached

    在文章 Ruby On Rails中REST API使用演示样例--基于云平台+云服务打造自己的在线翻译工具 中,利用ruby的Net::HTTP发起http请求訪问IBM Bluemix上的sour ...

  9. Swift高阶函数介绍(闭包、Map、Filter、Reduce)

    Swift语言有非常多函数式编程的特性.常见的map,reduce,filter都有,初看和python几乎相同,以下简介下 闭包介绍: 闭包是自包括的功能代码块,能够在代码中使用或者用来作为參数传值 ...

  10. Android Material Design 中文版

    http://www.google.com/design/spec/animation/authentic-motion.html http://www.oschina.net/question/14 ...