[题目链接]

https://www.lydsy.com/JudgeOnline/problem.php?id=2111

[算法]

一种比较好的理解方式是将该序列看成是一棵堆式存储的二叉树

那么问题转化为求有多少个堆

考虑dp , 用fi表示以i为根的子树能构成多少个堆

根结点显然是最小的数 , 我们要在剩余的(sizei - 1)个数中选出size(2i)个数 , 然后分配至左右子树中

显然 , fi = C(sizei - 1 , size(2i)) * f(2i) * f(2i + 1)

预处理阶乘和逆元 , 用lucas定理求组合数即可

时间复杂度 : O(N)

[代码]

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int N = 2e6 + ; int n , P;
int fac[N] , inv[N] , size[N]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline int exp_mod(int a , int n)
{
int res = , b = a;
while (n > )
{
if (n & ) res = 1ll * res * b % P;
b = 1ll * b * b % P;
n >>= ;
}
return res;
}
inline void init()
{
fac[] = ;
for (int i = ; i <= min(n , P - ); i++) fac[i] = 1ll * fac[i - ] * i % P;
inv[min(n , P - )] = exp_mod(fac[min(n , P - )] , P - );
for (int i = min(n , P - ) - ; i >= ; i--) inv[i] = 1ll * inv[i + ] * (i + ) % P;
}
inline int C(int x , int y)
{
if (!y) return ;
if (x == y) return ;
if (x < y) return ;
return 1ll * fac[x] * inv[y] % P * inv[x - y] % P;
}
inline int lucas(int x , int y)
{
if (!y) return ;
if (x < P && y < P) return C(x , y);
return 1ll * lucas(x / P , y / P) * C(x % P , y % P) % P;
}
inline int dp(int u)
{
if (u > n) return ;
return 1ll * lucas(size[u] - , size[u << ]) * dp(u << ) % P * dp(u << | ) % P;
} int main()
{ read(n); read(P);
init();
for (int i = ; i <= n; i++) size[i] = ;
for (int i = n; i >= ; i--) size[i >> ] += size[i];
printf("%d\n" , dp()); return ; }

[ZJOI 2010] 排列计数的更多相关文章

  1. [ZJOI 2010] 数字计数

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1833 [算法] 数位DP [代码] #include <algorithm&g ...

  2. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  3. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  4. ACM/ICPC 之 DP-浅谈“排列计数” (POJ1037)

    这一题是最近在看Coursera的<算法与设计>的公开课时看到的一道较难的DP例题,之所以写下来,一方面是因为DP的状态我想了很久才想明白,所以借此记录,另一方面是看到这一题有运用到 排列 ...

  5. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  6. 【数论·错位排列】bzoj4517 排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1428  Solved: 872[Submit][Statu ...

  7. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  8. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  9. bzoj4517排列计数 错排+组合

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1491  Solved: 903[Submit][Statu ...

随机推荐

  1. Jenkins 的安装与简单使用

    一.安装 项目中接触到了jenkins感觉是一个不错的项目发布构建工具,自己就简单的学习了一下,记录一下方便以后使用 jenkin下载地址:https://jenkins-ci.org/   我直接使 ...

  2. 为什么应使用 Node.js

    为什么应使用 Node.js JavaScript 高涨的人气带来了很多变化,以至于如今使用其进行网络开发的形式也变得截然不同了.就如同在浏览器中一样,现在我们也可以在服务器上运行 JavaScrip ...

  3. 【NoSql】Redis实践篇-简单demo实现(一)

    Redis是一个key-value存储系统. Redis的出现,非常大程度补偿了memcached这类key/value存储的不足,在部分场合能够对关系数据库起到非常好的补充作用 Redis是一个ke ...

  4. Ansible 汇总

    不错的博客:https://www.cnblogs.com/EWWE/p/8146083.html 修改文件权限: 首先需要 vi /etc/ansible/hosts (用pip install, ...

  5. 实习日记 laravel怎么删除磁盘上的文件

    Storage 里面有 delete的方法 具体使用是 Storage::disk('uploads')->delete($fileName); 其中'uploads'是filesystem里面 ...

  6. vim调试

    首先,想调试一个程序的话,输入以下命令: guest-djjtew@ubuntu:~$ python3 -m pdb 1.py 这时候就停止了,等待着你的输入,然后输入"l"的话, ...

  7. 这6种思维,学会了你就打败了95%文案!zz

    ​本文笔者为大家讲述了文案高手写文案时最常用的六种思维,这六种思维也都是文案新手容易入的坑. 有的人做了3,5年的文案,还是小白一个.而有的人短短1,2年的时间,却可以成为文案高手. 为什么? 我总结 ...

  8. iOS应用数据存储的经常使用方式

    ios程序中数据数据存储有下列5种方式 XML属性列表(plist)归档 Preference(偏好设置) NSKeyedArchiver归档(NSCoding) SQLite3 Core Data ...

  9. 误用了 react-scripts eject 命令

    react 小白编程 由于使用 create-react-app 脚手架构建项目的时候,会给几个命令用 其中一个命令吸引了我的注意力  yarn eject,因为构建完成后特别提示说“你不会想要用到这 ...

  10. MySQL Infobright 数据仓库快速安装笔记[转]

    [文章作者:张宴 本文版本:v1.1 最后修改:2010.05.18 转载请注明原文链接:http://blog.zyan.cc/infobright/] Infobright是一个与MySQL集成的 ...