Musical Theme

人生第一道后缀数组的题,采用大众化思想姿势极其猥琐。

题意:给你n个数,问其中是否存在一个子序列,这个子序列加上或者减去一个数与另一个子序列一样。要求两个子序列不能有重叠的部分。求这个子序列最长的长度。

思路:有点像KMP,先将所有的数之间的差(再加上88)存在一个数组中,然后对这个数组进行构造后缀数组。我们知道height[]数组的含义是:排名为i的这个后缀与排名为i-1的这个后缀的最长公共前缀。而我们要求的是不重叠,怎么解决这个问题呢 ,我们可以二分答案,将问题变成二分判定型。引用罗穗骞的论文:

先二分答案,把题目变成判定性问题:判断是否存在两个长度为k的子串是相同的,且不重叠。解决这个问题的关键还是利用height数组。把排序后的后缀分成若干组,其中每组的后缀之间的height值都不小于k。容易看出,有希望成为最长公共前缀不小于k的两个后缀一定在同一组。然后对于每组后缀,只须判断每个后缀的sa值的最大值和最小值之差是否不小于k。如果有一组满足,则说明存在,否则不存在。整个做法的时间复杂度为O(nlogn)。

需要注意的是此题m的范围是88*2。

int a[N],s[N];
int sa[N],t[N],t1[N],c[N],n,m=88*3;
void build()
{
int i,*x=t,*y=t1;
memset(c,0,sizeof(c));
for(i=0; i<n; i++) c[x[i]=s[i]]++;
for(i=1; i<m; i++) c[i]+=c[i-1];
for(i=n-1; i>=0; i--) sa[--c[x[i]]]=i;
for(int k=1; k<=n; k<<=1)
{
int p=0;
for(i=n-k; i<n; i++) y[p++]=i;
for(i=0; i<n; i++) if(sa[i]>=k) y[p++]=sa[i]-k; memset(c,0,sizeof(c));
for(i=0; i<n; i++) c[x[y[i]]]++;
for(i=1; i<m; i++) c[i]+=c[i-1];
for(i=n-1; i>=0; i--) sa[--c[x[y[i]]]]=y[i];
swap(x,y);
p=1,x[sa[0]]=0;
for(i=1; i<n; i++)
x[sa[i]]=y[sa[i-1]]==y[sa[i]]&&y[sa[i-1]+k]==y[sa[i]+k]?p-1:p++;
if(p>=n) break;
m=p;
}
}
int Rank[N],height[N];
void get_height()
{
int k=0;
for(int i=0;i<n;i++) Rank[sa[i]]=i;
for(int i=0;i<n;i++)
{
if(k) k--;
int j=sa[Rank[i]-1];
while(s[i+k]==s[j+k]) k++;
height[Rank[i]]=k;
}
}
int find(int k)
{
int i=1;
while(i<=n)
{
while(i<=n&&height[i]<k) i++;
if(i>n) return 0;
int ma=sa[i-1],mi=sa[i-1];
while(i<=n&&height[i]>=k)
{
ma=max(ma,sa[i]);
mi=min(mi,sa[i]);
i++;
}
if(ma-mi>=k) return 1;
}
return 0;
}
int main()
{
while(~scanf("%d",&n)&&n)
{
for(int i=0;i<n;i++) scanf("%d",&a[i]);
for(int i=0;i<n-1;i++) s[i]=a[i+1]-a[i]+88;
n--;
build();
get_height();
int l=0,r=n/2;
while(l<r)
{
int mid=(l+r+1)/2;
if(find(mid)) l=mid;
else r=mid-1;
}
l=l>=4?l+1:0;
printf("%d\n",l);
}
return 0;
}

心力交瘁。。。。。。卒

POJ-1743 Musical Theme,后缀数组+二分!的更多相关文章

  1. Poj 1743 Musical Theme (后缀数组+二分)

    题目链接: Poj  1743 Musical Theme 题目描述: 给出一串数字(数字区间在[1,88]),要在这串数字中找出一个主题,满足: 1:主题长度大于等于5. 2:主题在文本串中重复出现 ...

  2. Poj 1743 Musical Theme(后缀数组+二分答案)

    Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 28435 Accepted: 9604 Descri ...

  3. POJ 1743 Musical Theme ——后缀数组

    [题目分析] 其实找最长的不重叠字串是很容易的,后缀数组+二分可以在nlogn的时间内解决. 但是转调是个棘手的事情. 其实只需要o(* ̄▽ ̄*)ブ差分就可以了. 背板题. [代码] #include ...

  4. POJ 1743 Musical Theme 后缀数组 最长重复不相交子串

    Musical ThemeTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=1743 Description ...

  5. poj 1743 Musical Theme (后缀数组+二分法)

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16162   Accepted: 5577 De ...

  6. [poj 1743] Musical Theme 后缀数组 or hash

    Musical Theme 题意 给出n个1-88组成的音符,让找出一个最长的连续子序列,满足以下条件: 长度大于5 不重叠的出现两次(这里的出现可以经过变调,即这个序列的每个数字全都加上一个整数x) ...

  7. POJ 1743 Musical Theme ( 后缀数组 && 最长不重叠相似子串 )

    题意 : 给 n 个数组成的串,求是否有多个“相似”且不重叠的子串的长度大于等于5,两个子串相似当且仅当长度相等且每一位的数字差都相等. 分析 :  根据题目对于 “ 相似 ” 串的定义,我们可以将原 ...

  8. POJ.1743.Musical Theme(后缀数组 倍增 二分 / 后缀自动机)

    题目链接 \(Description\) 给定一段数字序列(Ai∈[1,88]),求最长的两个子序列满足: 1.长度至少为5 2.一个子序列可以通过全部加或减同一个数来变成另一个子序列 3.两个子序列 ...

  9. POJ 1743 Musical Theme 后缀数组 不可重叠最长反复子串

    二分长度k 长度大于等于k的分成一组 每组sa最大的和最小的距离大于k 说明可行 #include <cstdio> #include <cstring> #include & ...

  10. POJ 1743 [USACO5.1] Musical Theme (后缀数组+二分)

    洛谷P2743传送门 题目大意:给你一个序列,求其中最长的一对相似等长子串 一对合法的相似子串被定义为: 1.任意一个子串长度都大于等于5 2.不能有重叠部分 3.其中一个子串可以在全部+/-某个值后 ...

随机推荐

  1. JSP界面设置提示浮动框

    1.公共js <script type="text/javascript"> var tip={ $:function(ele){ if(typeof(ele)==&q ...

  2. 实训随笔:EL表达式JSON应用

    由于之前在学校写的jsp页面都是夹杂着java代码的,所以之前写了个jsp,满满的<%%>和java代码,老师说那样太不美观了啊!!!要全部用EL表达式替代了.本人还是太笨了,弄了一上午才 ...

  3. Azure School女神相邀,把每分钟都过的更充实

    也许你不姓「牛」,但是你技术牛啊 所以,请容我叫你一声「牛郎」 (讲真,只是因为你技术牛,不是其他啥原因哈) 平时忙到昏天黑地,一心一意为技术的你 注意看一下日历,因为: !!!七夕节(8月28日)到 ...

  4. Java、Node.js、PHP还是.Net? 无论你选谁,我都能教你一招!

    七夕如期而至,不该来的终究还是来了.再傲娇的单身贵族恐怕也难免在今天会感觉一丝丝的空虚.还好你关注了我,因为接下来我准备了三大招教你一个人…..也可以优雅地过七夕. 招式一:移形幻影,无中生有 七夕当 ...

  5. MySQL存储过程(批量生成论坛中发帖、回帖、主题等数据)

    USE 数据库名称1;DROP PROCEDURE IF EXISTS 数据库名称1.存储过程名称;delimiter $$CREATE PROCEDURE 数据库名称1.存储过程名称(in v_co ...

  6. EJB2.0教程 详解EJB技术及实现原理

    EJB是什么呢?EJB是一个J2EE体系中的组件.再简单的说它是一个能够远程调用的javaBean.它同普通的javaBean有两点不同.第一点,就是远程调用.第二点,就是事务的功能,我们在EJB中声 ...

  7. iphone图片简单处理

    使用sips批量缩放图片大小 >>sips -s format jpeg -Z 250 someImage.PNG --out myImage.JPEG 把someImage.PNG转换为 ...

  8. PostgressSQL-Installation

    安装 sudo apt install -y postgresql 自动生成一个名为 postgres 的 Linux 系统用户 $ finger postgres Login: postgres N ...

  9. UVA 11374 Airport Express (最短路)

    题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...

  10. block总结

    3.编译器中的block 3.1 block的数据结构定义 我们通过大师文章中的一张图来说明: 上图这个结构是在栈中的结构,我们来看看对应的结构体定义: 1 2 3 4 5 6 7 8 9 10 11 ...