集成GPUImageBeautifyFilter和GPUImage Framework
首先需要集成好
GPUImage,通过观察目前iOS平台,90%以上美颜方案都是基于这个框架来做的。
原来项目中的AVCaptureDevice需要替换成GPUImageVideoCamera,删除诸如AVCaptureSession/AVCaptureDeviceInput/AVCaptureVideoDataOutput这种GPUImage实现了的部分。修改一些生命周期,摄像头切换,横竖屏旋转等相关逻辑,保证前后行为统一。
声明需要的属性
@property (nonatomic, strong) GPUImageVideoCamera *videoCamera; //屏幕上显示的View @property (nonatomic, strong) GPUImageView *filterView; //BeautifyFace美颜滤镜 @property (nonatomic, strong) GPUImageBeautifyFilter *beautifyFilter;
然后初始化
self.sessionPreset = AVCaptureSessionPreset1280x720; self.videoCamera = [[GPUImageVideoCamera alloc] initWithSessionPreset:self.sessionPreset cameraPosition:AVCaptureDevicePositionBack]; self.filterView = [[GPUImageView alloc] init]; [self.view insertSubview:self.filterView atIndex:1]; //省略frame的相关设置 //这里我在GPUImageBeautifyFilter中增加个了初始化方法用来设置美颜程度intensity self.beautifyFilter = [[GPUImageBeautifyFilter alloc] initWithIntensity:0.6];
为filterView增加美颜滤镜
[self.videoCamera addTarget:self.beautifyFilter]; [self.beautifyFilter addTarget:self.filterView];
然后调用startCameraCapture方法就可以看到效果了
[self.videoCamera startCameraCapture];
到这里,仅仅是屏幕显示的内容带有滤镜效果,而作为直播应用,还需要输出带有美颜效果的视频流:
输出带有美颜效果的视频流
刚开始集成的时候碰见一个坑,原本的逻辑是实现AVCaptureVideoDataOutputSampleBufferDelegate方法来获得原始帧
- (void) captureOutput:(AVCaptureOutput *)captureOutput didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection *)connection;
而GPUImageVideoCamera也实现了一个类似的代理:
@protocol GPUImageVideoCameraDelegate <NSObject> @optional - (void)willOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer; @end
而替换之后发现输出的流依旧是未经美颜的图像,看了实现后发现果不其然,GPUImageVideoCameraDelegate还是通过AVCaptureVideoDataOutputSampleBufferDelegate直接返回的数据,所以想输出带有滤镜的流这里就得借助GPUImageRawDataOutput了
CGSize outputSize = {720, 1280}; GPUImageRawDataOutput *rawDataOutput = [[GPUImageRawDataOutput alloc] initWithImageSize:CGSizeMake(outputSize.width, outputSize.height) resultsInBGRAFormat:YES]; [self.beautifyFilter addTarget:rawDataOutput];
这个GPUImageRawDataOutput其实就是beautifyFilter的输出工具,可在setNewFrameAvailableBlock方法的block中获得带有滤镜效果的数据
__weak GPUImageRawDataOutput *weakOutput = rawDataOutput; __weak typeof(self) weakSelf = self; [rawDataOutput setNewFrameAvailableBlock:^{ __strong GPUImageRawDataOutput *strongOutput = weakOutput; [strongOutput lockFramebufferForReading]; // 这里就可以获取到添加滤镜的数据了 GLubyte *outputBytes = [strongOutput rawBytesForImage]; NSInteger bytesPerRow = [strongOutput bytesPerRowInOutput]; CVPixelBufferRef pixelBuffer = NULL; CVPixelBufferCreateWithBytes(kCFAllocatorDefault, outputSize.width, outputSize.height, kCVPixelFormatType_32BGRA, outputBytes, bytesPerRow, nil, nil, nil, &pixelBuffer); // 之后可以利用VideoToolBox进行硬编码再结合rtmp协议传输视频流了 [weakSelf encodeWithCVPixelBufferRef:pixelBuffer]; [strongOutput unlockFramebufferAfterReading]; CFRelease(pixelBuffer); }];
经过和其他产品对比,GPUImageBeautifyFilter磨皮效果和花椒最为类似。这里采用双边滤波, 花椒应该用了高斯模糊实现。同印客对比,美白效果一般。
关于性能的问题:
1 调用setNewFrameAvailableBlock后很多机型只能跑到不多不少15fps
2 在6s这代机型上温度很高,帧率可到30fps但不稳定
关于性能问题,最近把项目中集成的美颜滤镜(BeautifyFace)里用到的 GPUImageCannyEdgeDetectionFilter 替换为 GPUImageSobelEdgeDetectionFilter 会有很大改善,而且效果几乎一致,6s经过长时间测试没有再次出现高温警告了。(替换也十分简单,直接改俩处类名/变量名就可以了)
最近发现当开启美颜的时候,关闭直播内存竟然没有释放。分析得出GPUImageRawDataOutput的setNewFrameAvailableBlock方法的block参数仍然保持着self,解决思路就是将GPUImageRawDataOutput移除。
先附上之前的相关release代码:
[self.videoCamera stopCameraCapture]; [self.videoCamera removeInputsAndOutputs]; [self.videoCamera removeAllTargets];
开始以为camera调用removeAllTargets会把camera上面的filter,以及filter的output一同释放,但实际camera并不会'帮忙'移除filter的target,所以需要添加:
[self.beautifyFilter removeAllTargets]; //修复开启美颜内存无法释放的问题
关闭美颜output是直接加在camera上,camera直接removeAllTargets就可以;
开启美颜output加在filter上,camera和filter都需要removeAllTargets。
要理解它的实现原理,需要搞懂GPUImageUIElement和GPUImageAlphaBlendFilter。
GPUImageUIElement的作用是把一个视图的layer通过CALayer的renderInContext方法把layer转化为image,然后作为OpenGL的纹理传给GPUImageAlphaBlendFilter。
而GPUImageAlphaBlendFilter则是一个两输入的blend 混合 filter, 它的第一个输入是摄像头数据,第二个输入则是刚刚提到的GPUImageUIElement的数据,GPUImageAlphaBlendFilter将这两个输入做alpha blend,可以简单的理解为将第二个输入叠加到第一个的上面,更多关于
alpha blend在维基百科上有介绍。下图是整个加水印的过程:
水印.png
人脸检测
利用CIDetector即可简单的实现人脸检测,首先是CIDetector的初始化:
NSDictionary *detectorOptions = [[NSDictionary alloc] initWithObjectsAndKeys:CIDetectorAccuracyLow, CIDetectorAccuracy, nil]; _faceDetector = [CIDetector detectorOfType:CIDetectorTypeFace context:nil options:detectorOptions];
然后通过将摄像头数据CMSampleBufferRef转化为CIImage,对CIImage用CIDetector进行人脸检测:
CVPixelBufferRef pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer); CFDictionaryRef attachments = CMCopyDictionaryOfAttachments(kCFAllocatorDefault, sampleBuffer, kCMAttachmentMode_ShouldPropagate); CIImage *convertedImage = [[CIImage alloc] initWithCVPixelBuffer:pixelBuffer options:(__bridge NSDictionary *)attachments]; NSArray *features = [self.faceDetector featuresInImage:convertedImage options:imageOptions];
上面得到的features数组里的每个元素都是CIFaceFeature对象,根据它就能计算出人脸的具体位置,从而调整中水印图像的位置,达到图像跟随人脸动的效果。
for ( CIFaceFeature *faceFeature in featureArray) { // find the correct position for the square layer within the previewLayer // the feature box originates in the bottom left of the video frame. // (Bottom right if mirroring is turned on) //Update face bounds for iOS Coordinate System CGRect faceRect = [faceFeature bounds]; // flip preview width and height CGFloat temp = faceRect.size.width; faceRect.size.width = faceRect.size.height; faceRect.size.height = temp; temp = faceRect.origin.x; faceRect.origin.x = faceRect.origin.y; faceRect.origin.y = temp; // scale coordinates so they fit in the preview box, which may be scaled CGFloat widthScaleBy = previewBox.size.width / clap.size.height; CGFloat heightScaleBy = previewBox.size.height / clap.size.width; faceRect.size.width *= widthScaleBy; faceRect.size.height *= heightScaleBy; faceRect.origin.x *= widthScaleBy; faceRect.origin.y *= heightScaleBy; faceRect = CGRectOffset(faceRect, previewBox.origin.x, previewBox.origin.y); //mirror CGRect rect = CGRectMake(previewBox.size.width - faceRect.origin.x - faceRect.size.width, faceRect.origin.y, faceRect.size.width, faceRect.size.height); if (fabs(rect.origin.x - self.faceBounds.origin.x) > 5.0) { self.faceBounds = rect; } }
上面则是计算人脸位置faceBounds的方法,我们再根据faceBounds来更新水印图像的位置:
__weak typeof (self) weakSelf = self; [filter setFrameProcessingCompletionBlock:^(GPUImageOutput *output, CMTime time) { __strong typeof (self) strongSelf = weakSelf; // update capImageView's frame CGRect rect = strongSelf.faceBounds; CGSize size = strongSelf.capImageView.frame.size; strongSelf.capImageView.frame = CGRectMake(rect.origin.x + (rect.size.width - size.width)/2, rect.origin.y - size.height, size.width, size.height); [strongSelf.element update]; }];
- 问题1:上面用的人脸检测是基于CIDetector的,实际实验发现,当人脸在摄像头中捕获不全时,有可能检测不出人脸,也就没法更新水印图像的位置。因此,更加精准、快速、细致的人脸检测是很有必要的,后面我会尝试使用一些其他的人脸检测方法。
- 问题2:上面的Faceu贴纸效果是静态图像的贴纸效果,如果要做动态效果的Faceu贴纸该怎么处理呢, Gif? CADisplayLink? 这个有待进一步研究
利用美颜滤镜实现
- 步骤一:使用Cocoapods导入GPUImage
- 步骤二:导入GPUImageBeautifyFilter文件夹
- 步骤三:创建视频源GPUImageVideoCamera
- 步骤四:创建最终目的源:GPUImageView
- 步骤五:创建最终美颜滤镜:GPUImageBeautifyFilter
- 步骤六:设置GPUImage处理链,从数据源 => 滤镜 => 最终界面效果
注意:
- 切换美颜效果原理:移除之前所有处理链,重新设置处理链
- (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view. // 创建视频源 // SessionPreset:屏幕分辨率,AVCaptureSessionPresetHigh会自适应高分辨率 // cameraPosition:摄像头方向 GPUImageVideoCamera *videoCamera = [[GPUImageVideoCamera alloc] initWithSessionPreset:AVCaptureSessionPresetHigh cameraPosition:AVCaptureDevicePositionFront]; videoCamera.outputImageOrientation = UIInterfaceOrientationPortrait; _videoCamera = videoCamera; // 创建最终预览View GPUImageView *captureVideoPreview = [[GPUImageView alloc] initWithFrame:self.view.bounds]; [self.view insertSubview:captureVideoPreview atIndex:0]; _captureVideoPreview = captureVideoPreview; // 设置处理链 [_videoCamera addTarget:_captureVideoPreview]; // 必须调用startCameraCapture,底层才会把采集到的视频源,渲染到GPUImageView中,就能显示了。 // 开始采集视频 [videoCamera startCameraCapture]; } - (IBAction)openBeautifyFilter:(UISwitch *)sender { // 切换美颜效果原理:移除之前所有处理链,重新设置处理链 if (sender.on) { // 移除之前所有处理链 [_videoCamera removeAllTargets]; // 创建美颜滤镜 GPUImageBeautifyFilter *beautifyFilter = [[GPUImageBeautifyFilter alloc] init]; // 设置GPUImage处理链,从数据源 => 滤镜 => 最终界面效果 [_videoCamera addTarget:beautifyFilter]; [beautifyFilter addTarget:_captureVideoPreview]; } else { // 移除之前所有处理链 [_videoCamera removeAllTargets]; [_videoCamera addTarget:_captureVideoPreview]; } }
GPUImage扩展
已有的一些filter介绍:
#import "GPUImageBrightnessFilter.h" //亮度
#import "GPUImageExposureFilter.h" //曝光
#import "GPUImageContrastFilter.h" //对比度
#import "GPUImageSaturationFilter.h" //饱和度
#import "GPUImageGammaFilter.h" //伽马线
#import "GPUImageColorInvertFilter.h" //反色
#import "GPUImageSepiaFilter.h" //褐色(怀旧)
#import "GPUImageLevelsFilter.h" //色阶
#import "GPUImageGrayscaleFilter.h" //灰度
#import "GPUImageHistogramFilter.h" //色彩直方图,显示在图片上
#import "GPUImageHistogramGenerator.h" //色彩直方图
#import "GPUImageRGBFilter.h" //RGB
#import "GPUImageToneCurveFilter.h" //色调曲线
#import "GPUImageMonochromeFilter.h" //单色
#import "GPUImageOpacityFilter.h" //不透明度
#import "GPUImageHighlightShadowFilter.h" //提亮阴影
#import "GPUImageFalseColorFilter.h" //色彩替换(替换亮部和暗部色彩)
#import "GPUImageHueFilter.h" //色度
#import "GPUImageChromaKeyFilter.h" //色度键
#import "GPUImageWhiteBalanceFilter.h" //白平横
#import "GPUImageAverageColor.h" //像素平均色值
#import "GPUImageSolidColorGenerator.h" //纯色
#import "GPUImageLuminosity.h" //亮度平均
#import "GPUImageAverageLuminanceThresholdFilter.h" //像素色值亮度平均,图像黑白(有类似漫画效果)
#import "GPUImageLookupFilter.h" //lookup 色彩调整
#import "GPUImageAmatorkaFilter.h" //Amatorka lookup
#import "GPUImageMissEtikateFilter.h" //MissEtikate lookup
#import "GPUImageSoftEleganceFilter.h" //SoftElegance lookup
#pragma mark - 图像处理 Handle Image
#import "GPUImageCrosshairGenerator.h" //十字
#import "GPUImageLineGenerator.h" //线条
#import "GPUImageTransformFilter.h" //形状变化
#import "GPUImageCropFilter.h" //剪裁
#import "GPUImageSharpenFilter.h" //锐化
#import "GPUImageUnsharpMaskFilter.h" //反遮罩锐化
#import "GPUImageFastBlurFilter.h" //模糊
#import "GPUImageGaussianBlurFilter.h" //高斯模糊
#import "GPUImageGaussianSelectiveBlurFilter.h" //高斯模糊,选择部分清晰
#import "GPUImageBoxBlurFilter.h" //盒状模糊
#import "GPUImageTiltShiftFilter.h" //条纹模糊,中间清晰,上下两端模糊
#import "GPUImageMedianFilter.h" //中间值,有种稍微模糊边缘的效果
#import "GPUImageBilateralFilter.h" //双边模糊
#import "GPUImageErosionFilter.h" //侵蚀边缘模糊,变黑白
#import "GPUImageRGBErosionFilter.h" //RGB侵蚀边缘模糊,有色彩
#import "GPUImageDilationFilter.h" //扩展边缘模糊,变黑白
#import "GPUImageRGBDilationFilter.h" //RGB扩展边缘模糊,有色彩
#import "GPUImageOpeningFilter.h" //黑白色调模糊
#import "GPUImageRGBOpeningFilter.h" //彩色模糊
#import "GPUImageClosingFilter.h" //黑白色调模糊,暗色会被提亮
#import "GPUImageRGBClosingFilter.h" //彩色模糊,暗色会被提亮
#import "GPUImageLanczosResamplingFilter.h" //Lanczos重取样,模糊效果
#import "GPUImageNonMaximumSuppressionFilter.h" //非最大抑制,只显示亮度最高的像素,其他为黑
#import "GPUImageThresholdedNonMaximumSuppressionFilter.h" //与上相比,像素丢失更多
#import "GPUImageSobelEdgeDetectionFilter.h" //Sobel边缘检测算法(白边,黑内容,有点漫画的反色效果)
#import "GPUImageCannyEdgeDetectionFilter.h" //Canny边缘检测算法(比上更强烈的黑白对比度)
#import "GPUImageThresholdEdgeDetectionFilter.h" //阈值边缘检测(效果与上差别不大)
#import "GPUImagePrewittEdgeDetectionFilter.h" //普瑞维特(Prewitt)边缘检测(效果与Sobel差不多,貌似更平滑)
#import "GPUImageXYDerivativeFilter.h" //XYDerivative边缘检测,画面以蓝色为主,绿色为边缘,带彩色
#import "GPUImageHarrisCornerDetectionFilter.h" //Harris角点检测,会有绿色小十字显示在图片角点处
#import "GPUImageNobleCornerDetectionFilter.h" //Noble角点检测,检测点更多
#import "GPUImageShiTomasiFeatureDetectionFilter.h" //ShiTomasi角点检测,与上差别不大
#import "GPUImageMotionDetector.h" //动作检测
#import "GPUImageHoughTransformLineDetector.h" //线条检测
#import "GPUImageParallelCoordinateLineTransformFilter.h" //平行线检测
#import "GPUImageLocalBinaryPatternFilter.h" //图像黑白化,并有大量噪点
#import "GPUImageLowPassFilter.h" //用于图像加亮
#import "GPUImageHighPassFilter.h" //图像低于某值时显示为黑
#pragma mark - 视觉效果 Visual Effect
#import "GPUImageSketchFilter.h" //素描
#import "GPUImageThresholdSketchFilter.h" //阀值素描,形成有噪点的素描
#import "GPUImageToonFilter.h" //卡通效果(黑色粗线描边)
#import "GPUImageSmoothToonFilter.h" //相比上面的效果更细腻,上面是粗旷的画风
#import "GPUImageKuwaharaFilter.h" //桑原(Kuwahara)滤波,水粉画的模糊效果;处理时间比较长,慎用
#import "GPUImageMosaicFilter.h" //黑白马赛克
#import "GPUImagePixellateFilter.h" //像素化
#import "GPUImagePolarPixellateFilter.h" //同心圆像素化
#import "GPUImageCrosshatchFilter.h" //交叉线阴影,形成黑白网状画面
#import "GPUImageColorPackingFilter.h" //色彩丢失,模糊(类似监控摄像效果)
#import "GPUImageVignetteFilter.h" //晕影,形成黑色圆形边缘,突出中间图像的效果
#import "GPUImageSwirlFilter.h" //漩涡,中间形成卷曲的画面
#import "GPUImageBulgeDistortionFilter.h" //凸起失真,鱼眼效果
#import "GPUImagePinchDistortionFilter.h" //收缩失真,凹面镜
#import "GPUImageStretchDistortionFilter.h" //伸展失真,哈哈镜
#import "GPUImageGlassSphereFilter.h" //水晶球效果
#import "GPUImageSphereRefractionFilter.h" //球形折射,图形倒立
#import "GPUImagePosterizeFilter.h" //色调分离,形成噪点效果
#import "GPUImageCGAColorspaceFilter.h" //CGA色彩滤镜,形成黑、浅蓝、紫色块的画面
#import "GPUImagePerlinNoiseFilter.h" //柏林噪点,花边噪点
#import "GPUImage3x3ConvolutionFilter.h" //3x3卷积,高亮大色块变黑,加亮边缘、线条等
#import "GPUImageEmbossFilter.h" //浮雕效果,带有点3d的感觉
#import "GPUImagePolkaDotFilter.h" //像素圆点花样
#import "GPUImageHalftoneFilter.h" //点染,图像黑白化,由黑点构成原图的大致图形
#pragma mark - 混合模式 Blend
#import "GPUImageMultiplyBlendFilter.h" //通常用于创建阴影和深度效果
#import "GPUImageNormalBlendFilter.h" //正常
#import "GPUImageAlphaBlendFilter.h" //透明混合,通常用于在背景上应用前景的透明度
#import "GPUImageDissolveBlendFilter.h" //溶解
#import "GPUImageOverlayBlendFilter.h" //叠加,通常用于创建阴影效果
#import "GPUImageDarkenBlendFilter.h" //加深混合,通常用于重叠类型
#import "GPUImageLightenBlendFilter.h" //减淡混合,通常用于重叠类型
#import "GPUImageSourceOverBlendFilter.h" //源混合
#import "GPUImageColorBurnBlendFilter.h" //色彩加深混合
#import "GPUImageColorDodgeBlendFilter.h" //色彩减淡混合
#import "GPUImageScreenBlendFilter.h" //屏幕包裹,通常用于创建亮点和镜头眩光
#import "GPUImageExclusionBlendFilter.h" //排除混合
#import "GPUImageDifferenceBlendFilter.h" //差异混合,通常用于创建更多变动的颜色
#import "GPUImageSubtractBlendFilter.h" //差值混合,通常用于创建两个图像之间的动画变暗模糊效果
#import "GPUImageHardLightBlendFilter.h" //强光混合,通常用于创建阴影效果
#import "GPUImageSoftLightBlendFilter.h" //柔光混合
#import "GPUImageChromaKeyBlendFilter.h" //色度键混合
#import "GPUImageMaskFilter.h" //遮罩混合
#import "GPUImageHazeFilter.h" //朦胧加暗
#import "GPUImageLuminanceThresholdFilter.h" //亮度阈
#import "GPUImageAdaptiveThresholdFilter.h" //自适应阈值
#import "GPUImageAddBlendFilter.h" //通常用于创建两个图像之间的动画变亮模糊效果
#import "GPUImageDivideBlendFilter.h" //通常用于创建两个图像之间的动画变暗模糊效果
源码下载
注意:第一次打开需要 pod install
用CocoaPods集成到项目中。
pod 'GPUImage', '~> 0.1.7'
亮度(brightness)取值范围[-1,1],0为正常状态,默认。 (2)平滑因子(distanceNormalizationFactor)值越小,磨皮效果越好,默认为8。我为了演示效果,把最大值设置成100,这样几乎就没有磨皮效果了,平时最好10以内。最好大于0,不然就会变形。
自定义滤镜
如果你感觉GPUImage自带的滤镜不够用的话,也可以自定义滤镜,使用方式和上面的差不多。我以一个别人写的
美颜滤镜为例。
1.
demo下载地址。把GPUImageBeautifyFilter文件夹导入你的工程中。
待验证
ios美颜: