题解 CF576C 【Points on Plane】

一道很好的思维题。

传送门

我们看这个曼哈顿距离,显然如果有一边是按顺序排列的,显然是最优的,那另一边怎么办呢?

假如你正在\(ioi\)赛场上,此时遇到一个\(n\le 10^6\)的题目,你现在发现自己的排列最坏情况是\(O(n^2)\)的,你怎么办?

可以莫队优化!

于是复杂度降到了\(O(n\sqrt{n})\)。

那么我们回来看,假设点是按\(x\)轴为关键字排序的,那么\(x\)方向产生的贡献最多是\(n\)的。

那么,算上\(y\)轴方向上的贡献,最终的答案是

\(f(n)=n+n\sqrt{n}\)

当\(n\le10^6\)时,

\(y=f(x),y_{min}=1001000000<2.5\times 10^9\)

于是这题就解决了。上代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<bitset>
#include<vector>
#include<map>
#include<ctime>
#include<cstdlib>
#include<set>
#include<bitset>
#include<stack>
#include<list>
#include<cmath>
using namespace std;
#define RP(t,a,b) for(register int (t)=(a),edd_=(b);t<=edd_;++t)
#define DRP(t,a,b) for(register int (t)=(a),edd_=(b);t>=edd_;--t)
#define ERP(t,a) for(int t=head[a];t;t=e[t].nx)
#define Max(a,b) ((a)<(b)?(b):(a))
#define Min(a,b) ((a)<(b)?(a):(b))
#define TMP template<class ccf>
#define lef L,R,l,mid,pos<<1
#define rgt L,R,mid+1,r,pos<<1|1
#define midd register int mid=(l+r)>>1
#define chek if(R<l||r<L)return
#define all 1,n,1
#define pushup(x) seg[(x)]=seg[(x)<<1]+seg[(x)<<1|1]
typedef long long ll;
TMP inline ccf qr(ccf k){
char c=getchar();
ccf x=0;
int q=1;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
if(q==-1)
x=-x;
return x;
}
const int maxn=1e6+15;
int be[maxn];
int N;
int n;
struct node{
int x,y,id;
inline void scan(int k){
x=qr(1);
y=qr(1);
id=k;
}
inline bool operator < (node z){
int dx=z.x;
int dy=z.y;
if(be[dx]==be[x]){
if(be[dx]&1)
return y<dy;
else
return y>dy;
}
else
return x<dx;
}
}data[maxn]; int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
n=qr(1);
RP(t,1,n)
data[t].scan(t);
N=pow(n,0.5);
RP(t,1,maxn-15)
be[t]=(t-1)/N+1;
sort(data+1,data+n+1);
RP(t,1,n)
cout<<data[t].id<<' ';
cout<<endl;
return 0;
}

题解 CF576C 【Points on Plane】的更多相关文章

  1. CF576C Points on Plane 构造

    正解:构造 解题报告: 先放下传送门趴QAQ 话说我jio得这题好玄学啊,,,就是,我实在觉得我这题做得完美无缺了?可就是过不去,,,而且它告诉我的奇异错误是"wrong output fo ...

  2. Codeforces Round #319 (Div. 1) C. Points on Plane 分块

    C. Points on Plane Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/576/pro ...

  3. 【CodeForces】576 C. Points on Plane

    [题目]C. Points on Plane [题意]给定坐标系中n个点的坐标(范围[0,10^6]),求一种 [ 连边形成链后总长度<=2.5*10^9 ] 的方案.n<=10^6. [ ...

  4. Codeforces Round #319 (Div. 1)C. Points on Plane 分块思想

                                                                              C. Points on Plane On a pl ...

  5. codeforces 577E E. Points on Plane(构造+分块)

    题目链接: E. Points on Plane time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  6. 构造 - Codeforces Round #319 (Div. 1)C. Points on Plane

    Points on Plane Problem's Link Mean: 在二维坐标中给定n个点,求一条哈密顿通路. analyse: 一开始忽略了“无需保证路径最短”这个条件,一直在套最短哈密顿通路 ...

  7. CodeForces 577E Points on Plane(莫队思维题)

    题目描述 On a plane are nn points ( x_{i}xi​ , y_{i}yi​ ) with integer coordinates between 00 and 10^{6} ...

  8. Points on Plane Codeforces - 576C

    https://www.luogu.org/problemnew/show/CF576C 看题面,一眼按莫队的方法排一下 直接交就会和我一样发现WA掉了... 算一下会发现,上限是3e9(块内左端点1 ...

  9. Codeforces Round #319 (Div. 2) E - Points on Plane

    题目大意:在一个平面里有n个点,点坐标的值在1-1e6之间,让你给出一个遍历所有点的顺序,要求每个点走一次,且 曼哈顿距离之和小于25*1e8. 思路:想了一会就有了思路,我们可以把1e6的x,y坐标 ...

随机推荐

  1. Loj #6287 诗歌

    link: https://loj.ac/problem/6287 一开始差点写FFT了23333,并且FFT还能算这样的三元组的数量而且还不用要求这是一个排列.... 但这太大材小用了(而且很可能被 ...

  2. Jenkins连接git时出现“Failed to connect to repository : Command ... HEAD" returned status code 128:”的问题解决

    网上说的解决方法如下: 其实生成ssh时不应该使用当前用户去生成ssh,而是使用jenkins这个用户去生成ssh,然后再去git服务器上配置你生成key,最后再jenkins上配置返回给你的key. ...

  3. JavDroider的作品展示

    好久没有写博客了,很懊悔,尽管说实习和项目那边的任务有点多,可是我想每天抽出时间出来写一篇文章总结一下当天所习所得并不困难! 好了,今天以一篇个人作品介绍来又一次开启我的博客~ 实习单位的门户站点 一 ...

  4. 接口性能测试方案 白皮书 V1.0

    一. 性能测试术语解释 1. 响应时间 响应时间即从应用系统发出请求开始,到客户端接收到最后一个字节数据为止所消耗的时间.响应时间按软件的特点再可以细分,如对于一个 C/S 软件的响应时间可以细分为网 ...

  5. ThinkPHP中的模型命名

    当我们创建一个UserModel类的时候,其实已经遵循了系统的约定.ThinkPHP要求数据库的表名和模型类的命名遵循一定的规范,首先数据库的表名和字段全部采用小写形式,模型类的命名规则是除去表前缀的 ...

  6. URL Handle in Swift (一) -- URL 分解

    更新时间: 2018-6-6 在程序开发过程之中, 我们总是希望模块化处理某一类相似的事情. 在 ezbuy 开发中, 我接触到了对于 URL 处理的优秀的代码, 学习.改进.记录下来.希望对你有所帮 ...

  7. cmake学习之-project

    一.系统版本 cmake version: 3.5.2 系统版本: Ubuntun 16.04 cmake docment: 3.14.4 最后更新: 2019-05-31 二.指令说明 projec ...

  8. php遍历对象属性,可以使用foreach,直接打印出属性

    依然遵循私有属性不可以在外访问,(不能打印出来) 但可以在内部访问这个原则.

  9. 微服务之旅:从Netflix OSS到 Istio Service Mesh

    在这篇文章中,我们从Netflix开始,通过Envoy和Istio的崛起,快速浏览微服务的历史. 微服务是具有边界上下文的松散耦合服务,使您能够独立开发,部署和扩展服务.它还可以定义为构建独立开发和部 ...

  10. Java 8 Collectors to Map

    1. 介绍 在本教程中,我们将讨论Collectors类的toMap()方法.我们使用它将流收集到一个Map实例中. 对于本教程中涉及的所有示例,我们将使用图书列表作为数据源,并将其转换为不同的Map ...