UVA 11992 Fast Matrix Operations (降维)
题意:对一个矩阵进行子矩阵操作。
元素最多有1e6个,树套树不好开(我不会),把二维坐标化成一维的,一个子矩阵操作分解成多条线段的操作。
一次操作的复杂度是RlogC,很容易找到极端的数据(OJ上实测没有),如果判断一下然后启发式建树复杂度是min(RlogC,ClogR)。
代码中结点没有保存l和r,而且询问是保存在全局变量中,这样做比较省空间。但是也有缺点,比如推区间结点数量的时候会麻烦一点。
#include<bits/stdc++.h>
using namespace std; const int maxn = 1e6+;
int R,C; #define lid (id<<1)
#define rid (id<<1|1)
struct Seg
{
int add,setv;
int Max,Min,sum;
}tr[maxn<<]; #define OP1(id,val)\
tr[id].add += val; tr[id].Max += val; tr[id].Min += val; tr[id].sum += (r-l+)*val;
#define OP2(id,val)\
tr[id].Max = tr[id].setv = tr[id].Min = val; tr[id].add = ; tr[id].sum = val*(r-l+); inline void push_down(int id,int l,int r)
{
int lc = lid, rc = rid, mid = (l+r)>>;
if(tr[id].setv>=){
int &t = tr[id].setv;
swap(r,mid);
OP2(lc,t);
swap(l,r); l++; swap(mid,r);
OP2(rc,t);
l--; swap(mid,l);
t = -;
}
if(tr[id].add>){
int &t = tr[id].add;
swap(r,mid);
OP1(lc,t);
swap(l,r); l++; swap(mid,r);
OP1(rc,t);
l--; swap(mid,l);
t = ;
}
} inline void maintain(int id)
{
int lc = lid, rc = rid;
tr[id].sum = tr[lc].sum + tr[rc].sum;
tr[id].Max = max(tr[lc].Max,tr[rc].Max);
tr[id].Min = min(tr[lc].Min,tr[rc].Min);
} int ql,qr,val;
void add1D(int l = ,int r = R*C-,int id = )
{
if(ql<=l&&r<=qr) { OP1(id,val) return; }
int mid = (l+r)>>, lc = lid, rc = rid;
push_down(id,l,r);
if(ql<=mid) add1D(l,mid,lc);
if(qr>mid) add1D(mid+,r,rc);
maintain(id);
} void set1D(int l = ,int r = R*C-,int id = )
{
if(ql<=l&&r<=qr) { OP2(id,val) return; }
int mid = (l+r)>>, lc = lid, rc = rid;
push_down(id,l,r);
if(ql<=mid) set1D(l,mid,lc);
if(qr>mid) set1D(mid+,r,rc);
maintain(id);
} int queryMax1D(int l = ,int r = R*C-,int id = )
{
if(ql<=l&&r<=qr) { return tr[id].Max; }
int mid = (l+r)>>, lc = lid, rc = rid;
push_down(id,l,r);
int ret = ;
if(ql<=mid) ret = max(ret,queryMax1D(l,mid,lc));
if(qr>mid) ret = max(ret,queryMax1D(mid+,r,rc));
return ret;
} const int INF = 0x3f3f3f3f; int queryMin1D(int l = ,int r = R*C-,int id = )
{
if(ql<=l&&r<=qr) { return tr[id].Min; }
int mid = (l+r)>>, lc = lid, rc = rid;
push_down(id,l,r);
int ret = INF;
if(ql<=mid) ret = min(ret,queryMin1D(l,mid,lc));
if(qr>mid) ret = min(ret,queryMin1D(mid+,r,rc));
return ret;
} int querySum1D(int l = ,int r = R*C-,int id = )
{
if(ql<=l&&r<=qr) { return tr[id].sum; }
int mid = (l+r)>>, lc = lid, rc = rid;
push_down(id,l,r);
int ret = ;
if(ql<=mid) ret += querySum1D(l,mid,lc);
if(qr>mid) ret += querySum1D(mid+,r,rc);
return ret;
} //[0,r)
void add2D(int x1,int y1,int x2,int y2,int v)
{
val = v;
int st = x1*C+y1, len = y2-y1;
for(int x = x1; x <= x2; x++){
ql = st; qr = st+len;
add1D();
st += C;
}
} void set2D(int x1,int y1,int x2,int y2,int v)
{
val = v;
int st = x1*C+y1, len = y2-y1;
for(int x = x1; x <= x2; x++){
ql = st; qr = st+len;
set1D();
st += C;
}
} int querySum2D(int x1,int y1,int x2,int y2)
{
int ret = ;
int st = x1*C+y1, len = y2-y1;
for(int x = x1; x <= x2; x++){
ql = st; qr = st+len;
ret += querySum1D();
st += C;
}
return ret;
} int queryMax2D(int x1,int y1,int x2,int y2)
{
int ret = ;
int st = x1*C+y1, len = y2-y1;
for(int x = x1; x <= x2; x++){
ql = st; qr = st+len;
ret = max(ret,queryMax1D());
st += C;
}
return ret;
} int queryMin2D(int x1,int y1,int x2,int y2)
{
int ret = INF;
int st = x1*C+y1, len = y2-y1;
for(int x = x1; x <= x2; x++){
ql = st; qr = st+len;
ret = min(ret,queryMin1D());
st += C;
}
return ret;
} int main()
{
//freopen("in.txt","r",stdin);
int m;
while(~scanf("%d%d%d",&R,&C,&m)){
ql = ; qr = R*C-; val = ;
set1D();
while(m--){
int op,x1,y1,x2,y2; scanf("%d%d%d%d%d",&op,&x1,&y1,&x2,&y2);
if(op == ){
int v; scanf("%d",&v);
add2D(x1-,y1-,x2-,y2-,v);
}else if(op == ){
int v; scanf("%d",&v);
set2D(x1-,y1-,x2-,y2-,v);
}else {
x1--;x2--;y1--;y2--;
printf("%d %d %d\n",querySum2D(x1,y1,x2,y2),queryMin2D(x1,y1,x2,y2),queryMax2D(x1,y1,x2,y2));
}
}
}
return ;
}
UVA 11992 Fast Matrix Operations (降维)的更多相关文章
- UVA 11992 - Fast Matrix Operations(段树)
UVA 11992 - Fast Matrix Operations 题目链接 题意:给定一个矩阵,3种操作,在一个矩阵中加入值a,设置值a.查询和 思路:因为最多20列,所以全然能够当作20个线段树 ...
- uva 11992 Fast Matrix Operations 线段树模板
注意 setsetset 和 addvaddvaddv 标记的下传. 我们可以控制懒惰标记的优先级. 由于 setsetset 操作的优先级高于 addaddadd 操作,当下传 setsetset ...
- UVA 11992 Fast Matrix Operations(线段树:区间修改)
题目链接 2015-10-30 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=s ...
- 线段树(多维+双成段更新) UVA 11992 Fast Matrix Operations
题目传送门 题意:训练指南P207 分析:因为矩阵不超过20行,所以可以建20条线段的线段树,支持两个区间更新以及区间查询. #include <bits/stdc++.h> using ...
- UVA 11992 Fast Matrix Operations (二维线段树)
解法:因为至多20行,所以至多建20棵线段树,每行建一个.具体实现如下,有些复杂,慢慢看吧. #include <iostream> #include <cstdio> #in ...
- uva 11992 - Fast Matrix Operations
简单的线段树的题: 有两种方法写这个题,目前用的熟是这种慢点的: 不过不知道怎么老是T: 感觉网上A过的人的时间度都好小,但他们都是用数组实现的 难道是指针比数组慢? 好吧,以后多用数组写写吧! 超时 ...
- UVa 11992 Fast Matrix Operations (线段树,区间修改)
题意:给出一个row*col的全0矩阵,有三种操作 1 x1 y1 x2 y2 v:将x1 <= row <= x2, y1 <= col <= y2里面的点全部增加v: 2 ...
- 【UVA】11992 - Fast Matrix Operations(段树模板)
主体段树,要注意,因为有set和add操作,当慵懒的标志下推.递归优先set,后复发add,每次运行set行动add马克清0 WA了好几次是由于计算那一段的时候出问题了,可笑的是我对着模板找了一个多小 ...
- Fast Matrix Operations(UVA)11992
UVA 11992 - Fast Matrix Operations 给定一个r*c(r<=20,r*c<=1e6)的矩阵,其元素都是0,现在对其子矩阵进行操作. 1 x1 y1 x2 y ...
随机推荐
- 第一个PyQuery小demo
1.打开网址https://www.v2ex.com/,查看其源码. 2.打开PyCharm编译器,新建工程c3-11,新建python file,命名为v2ex.py,同时,新建file,命名为v2 ...
- php+redis实现高并发模拟下单、秒杀、抢购操作
对于高并发下的场景,一般都是采用redis缓存机制来处理. 当然也不是只有redis可以处理.还有利用mysql事务操作锁住操作的行.文件锁. 不过这些方式都没有redis缓存高效.可靠. 模拟的过程 ...
- Newtonsoft.Json序列化字符串-格式化和时间格式问题
最近C#中需要将实体进行json序列化,使用了Newtonsoft.Json public static void TestJson() { DataTable d ...
- java反射机制应用之动态代理
1.静态代理类和动态代理类区别 静态代理:要求被代理类和代理类同时实现相应的一套接口:通过代理类的对象调用重写接口的方法时,实际上执行的是被代理类的同样的 方法的调用. 动态代理:在程序运行时,根据被 ...
- SAS批量导出sas7bdata至excel
/*创建输出excel的宏*/ %macro export(inlib,intbl,outpath,outfile); proc export data=&inlib..&intbl ...
- 一些我推荐的和想上的网络课程(Coursera, edX, Udacity)
从面向找工作的角度出发,我觉得以下课程有很大帮助: 首推Robert Sedgewick,也是我觉得对我帮助最大的老师,讲课特点是能把复杂的算法讲解清楚(典型例子:红黑树,KMP算法) 他在Cours ...
- 剑指Offer的学习笔记(C#篇)-- 整数中1出现的次数(从1到n整数中1出现的次数)
题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...
- Mac环境下制作ubantu安装盘
前言:ubantu为Linux发行版之一,此方法亦可制作其他Linux发行版 1.在磁盘工具中将准备好的u盘格式化为Mac OS扩展(日志型),并确保分区的模式是GUID分区 2.官网自行下载uban ...
- DOM的学习网站 DOM是HTML和XML的编程接口
- 黑马旅游网配置 pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...