传送门

咳咳忘了容斥了……

设\(A(x)\)为斧头的生成函数,其中第\(x^i\)项的系数为价值为\(i\)的斧头个数,那么\(A(x)+A^2(x)+A^3(x)\)就是答案(于是信心满满的打了一发连样例都没过)

如果按上面那样算的话,会有重复的,比如说\(A^2(x)\),会产生诸如\((x_i,x_i)\)之类的同一把斧头的贡献,所以定义\(B(x)\)为同一个斧头重复两次的方案数,那么\(A^2(x)-B(x)\)就是两把斧头时真正的贡献,又因为与顺序无关,所以还要除以\(2\)

然后\(A^3(x)\)的话,可能会有一把斧头重复两次或三次,如果重复两次,那么就是\((x_i,x_i,y_i),(x_i,y_i,x_i),(y_i,x_i,x_i)\),就是\(3A(x)B(x)\),但是减去这个的话又会把\((x_i,x_i,x_i)\)的情况多减去两次,所以定义\(C(x)\)为同一把斧头重复三次的生成函数,于是还要加上\(2C(x)\),然后无关顺序的话还要除掉\(3!=6\)

综上,最终的答案的生成函数为$$Ans(x)=A(x)+\frac{A2(x)-B(x)}{2}+\frac{A3(x)-3A(x)B(x)+2C(x)}{6}$$

//minamoto
#include<cstdio>
#include<cmath>
#include<algorithm>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=6e5+5;const double Pi=acos(-1.0);
struct complex{
double x,y;
complex(double xx=0,double yy=0){x=xx,y=yy;}
inline complex operator +(const complex &b)const{return complex(x+b.x,y+b.y);}
inline complex operator -(const complex &b)const{return complex(x-b.x,y-b.y);}
inline complex operator *(const complex &b)const{return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
inline complex operator *(const int &b){return complex(x*b,y*b);}
inline complex operator /(const int &b){return complex(x/b,y/b);}
}A[N],B[N],C[N],O[N],ans[N];
int r[N],lim,n,x,l,m;
void FFT(complex *A,int ty){
fp(i,0,lim-1)if(i<r[i])swap(A[i],A[r[i]]);
for(R int mid=1;mid<lim;mid<<=1){
int I=(mid)<<1;
complex Wn(cos(Pi/mid),ty*sin(Pi/mid));
fp(i,1,mid-1)O[i]=O[i-1]*Wn;
for(R int j=0;j<lim;j+=I)fp(k,0,mid-1){
complex x=A[j+k],y=O[k]*A[j+k+mid];
A[j+k]=x+y,A[j+k+mid]=x-y;
}
}if(ty==-1)fp(i,0,lim-1)A[i].x=(int)(A[i].x/lim+0.5);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
fp(i,1,n)x=read(),++A[x].x,++B[x<<1].x,++C[(x<<1)+x].x,cmax(m,x);
m*=3,lim=1;while(lim<=m)lim<<=1,++l;O[0]=complex(1,0);
fp(i,0,lim-1)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(A,1),FFT(B,1),FFT(C,1);
fp(i,0,lim-1)ans[i]=A[i]+(A[i]*A[i]-B[i])/2+(A[i]*A[i]*A[i]-A[i]*B[i]*3+C[i]*2)/6;
FFT(ans,-1);
fp(i,0,m)if(ans[i].x)printf("%d %.0lf\n",i,ans[i].x);
return 0;
}

bzoj3771: Triple(容斥+生成函数+FFT)的更多相关文章

  1. 【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)

    [LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标 ...

  2. 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)

    点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...

  3. 5.15 省选模拟赛 容斥 生成函数 dp

    LINK:5.15 T2 个人感觉生成函数更无脑 容斥也好推的样子. 容易想到每次放数和数字的集合无关 所以得到一个dp f[i][j]表示前i个数字 逆序对为j的方案数. 容易得到转移 使用前缀和优 ...

  4. [LOJ2541][PKUWC2018]猎人杀(容斥+分治+FFT)

    https://blog.csdn.net/Maxwei_wzj/article/details/80714129 n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组. #inc ...

  5. [JSOI2019]神经网络(树形DP+容斥+生成函数)

    首先可以把题目转化一下:把树拆成若干条链,每条链的颜色为其所在的树的颜色,然后排放所有的链成环,求使得相邻位置颜色不同的排列方案数. 然后本题分为两个部分:将一棵树分为1~n条不相交的链的方案数:将这 ...

  6. [LOJ#3120][Luogu5401][CTS2019]珍珠(容斥+生成函数)

    https://www.luogu.org/blog/user50971/solution-p5401 #include<cstdio> #include<algorithm> ...

  7. 【BZOJ3771】Triple 生成函数 FFT 容斥原理

    题目大意 有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数.你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和.请你对于每种可能的总价值,求出有多少种选择方案. ...

  8. 【BZOJ 3771】 3771: Triple (FFT+容斥)

    3771: Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 547  Solved: 307 Description 我们讲一个悲伤的故事. ...

  9. spoj TSUM - Triple Sums fft+容斥

    题目链接 首先忽略 i < j < k这个条件.那么我们构造多项式$$A(x) = \sum_{1现在我们考虑容斥:1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\s ...

随机推荐

  1. iOS设备控制打印机输出文本

    本文转载至 http://tec.5lulu.com/detail/108krn1e6e66m8sbd.html 让我们来看看是如何实现的吧,首先要知道打印机的ip地址,然后用socket通过打印机的 ...

  2. 提高sqlite 的运行性能(转载)

    原文地址: https://blog.devart.com/increasing-sqlite-performance.html One the major issues a developer en ...

  3. 九度OJ 1119:Integer Inquiry(整数相加) (大数运算)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:679 解决:357 题目描述: One of the first users of BIT's new supercomputer was ...

  4. ora-12170 与 Oracle lsnrctl

    在startup 启动数据库后,使用plsql去连接数据库时, 出现ora-12170 错误:   在启动.关闭或者重启oracle监听器之前确保使用lsnrctl status命令检查oracle监 ...

  5. UI标签库专题四:JEECG智能开发平台 Upload(上传标签)

     1. Upload(上传标签) 1.1.  參数 属性名 类型 描写叙述 是否必须 默认值 id string 上传控件唯一标示 是 null name string 控件name 是 null ...

  6. 最简单的Windows程序

    准备研究一下vmp 保护,从一个最简单的Windows程序入手似乎是个不错的想法. 如何才最简单呢,仅仅有一个MessageBox 调用好了. 弹出消息.退出,哦也,够简单吧. 祭出法器VC2010. ...

  7. Android 反编译工具

    想必玩安卓的童鞋大多都知道,安卓的APK安装包是可以反编译出源代码的,如果开发人员发布时没有对其混淆等加密处理,反编译出来的代码几乎与真实的源代码一模一样. 想要反编译apk,需要用到apktool. ...

  8. bzoj4485: [Jsoi2015]圈地

    思维僵化选手在线被虐 其实应该是不难的,题目明显分成两个集合,要求是不同集合的点不能联通 先假设全选了,然后二分图最小割,相邻两个点直接连墙的费用就可以了 #include<cstdio> ...

  9. yum的配置文件yum.conf详解

    说明:经过网上抄袭和自己的总结加实验,非常详细,可留作参考. yum的配置一般有两种方式:   一种是直接配置/etc目录下的yum.conf文件, 另外一种是在/etc/yum.repos.d目录下 ...

  10. c语言之秒数算法

    // 水仙花树:是指一个3位数字,立方和 等于该数本身 // 秒数算法:随便输入一个大于0的数,求出对应的多少小时多少分钟多少秒 #include <stdio.h> / int main ...