这个题面怎么这么歧义……

Description

小Q同学现在沉迷炉石传说不能自拔。他发现一张名为克苏恩的牌很不公平。如果你不玩炉石传说,不必担心,小Q
同学会告诉你所有相关的细节。炉石传说是这样的一个游戏,每个玩家拥有一个 30 点血量的英雄,并且可以用牌
召唤至多 7 个随从帮助玩家攻击对手,其中每个随从也拥有自己的血量和攻击力。小Q同学有很多次游戏失败都是
因为对手使用了克苏恩这张牌,所以他想找到一些方法来抵御克苏恩。他去求助职业炉石传说玩家椎名真白,真白
告诉他使用奴隶主这张牌就可以啦。如果你不明白我上面在说什么,不必担心,小Q同学会告诉你他想让你做什么
。现在小Q同学会给出克苏恩的攻击力是 K ,表示克苏恩会攻击 K 次,每次会从对方场上的英雄和随从中随机选
择一个并对其产生 1 点伤害。现在对方有一名克苏恩,你有一些奴隶主作为随从,每名奴隶主的血量是给定的。
如果克苏恩攻击了你的一名奴隶主,那么这名奴隶主的血量会减少 1 点,当其血量小于等于 0 时会死亡,如果受
到攻击后不死亡,并且你的随从数量没有达到 7 ,这名奴隶主会召唤一个拥有 3 点血量的新奴隶主作为你的随从
;如果克苏恩攻击了你的英雄,你的英雄会记录受到 1 点伤害。你应该注意到了,每当克苏恩进行一次攻击,你
场上的随从可能发生很大的变化。小Q同学为你假设了克苏恩的攻击力,你场上分别有 1 点、 2 点、 3 点血量的
奴隶主数量,你可以计算出你的英雄受到的总伤害的期望值是多少吗?

Input

输入包含多局游戏。
第一行包含一个整数 T (T<100) ,表示游戏的局数。
每局游戏仅占一行,包含四个非负整数 K, A, B 和 C ,表示克苏恩的攻击力是 K ,你有 A 个 1 点血量的奴隶
主, B 个 2 点血量的奴隶主, C 个 3 点血量的奴隶主。
保证 K 是小于 50 的正数, A+B+C 不超过 7 。

Output

对于每局游戏,输出一个数字表示总伤害的期望值,保留两位小数。


题目分析

期望dp是真的太不熟了……暴力都能打挂。

 #include<cstdio>

 int T,k,a,b,c;
double ans; void dfs(int done, int n1, int n2, int n3, int bld, double sta)
{
if (done==k||!bld) return;
if (n1) dfs(done+, n1-, n2, n3, bld, sta*n1/(n1+n2+n3+1.0));
if (n2){
if (n1+n2+n3 < )
dfs(done+, n1+, n2-, n3+, bld, sta*n2/(n1+n2+n3+1.0));
else dfs(done+, n1+, n2-, n3, bld, sta*n2/(n1+n2+n3+1.0));
}
if (n3){
if (n1+n2+n3 < )
dfs(done+, n1, n2+, n3, bld, sta*n3/(n1+n2+n3+1.0));
else dfs(done+, n1, n2+, n3-, bld, sta*n3/(n1+n2+n3+1.0));
}
ans += sta/(n1+n2+n3+1.0);
dfs(done+, n1, n2, n3, bld, sta/(n1+n2+n3+1.0));
}
int main()
{
freopen("cthun.in","r",stdin);
freopen("cthun.out","w",stdout);
scanf("%d",&T);
while (T--)
{
ans = ;
scanf("%d%d%d%d",&k,&a,&b,&c);
dfs(, a, b, c, , 1.0);
printf("%.2lf\n",ans);
}
return ;
}

这个是暴力。标红部分意味着:对于n个奴隶主,攻击他们其中一个是不相同的,所以转移到这个状态的概率要乘n。

那么期望dp通常来说状态是倒着表示的:$f[t][i][j][k]$表示初始状态为$(t,i,j,k)$,最终的获得期望是多少。这样做的好处在于,可以预处理出所有的初始状态,并且转移时候会更加方便,不需要记录转移的概率。

所以这也算是一个需要灵活应用的点吧。

 #include<cstdio>
#include<cctype> int T,k,a,b,c;
double f[][][][]; int read()
{
int num = ;
bool fl = ;
char ch = getchar();
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int main()
{
freopen("cthun.in","r",stdin);
freopen("cthun.out","w",stdout);
for (int t=; t<=; t++)
for (int i=; i<=; i++)
for (int j=; i+j<=; j++)
for (int k=; i+j+k<=; k++)
{
double sum = i+j+k+1.0;
f[t][i][j][k] += (f[t-][i][j][k]+)/sum;
f[t][i][j][k] += f[t-][i-][j][k]*i/sum;
if (i+j+k < )
f[t][i][j][k] += f[t-][i+][j-][k+]*j/sum,
f[t][i][j][k] += f[t-][i][j+][k]*k/sum;
else
f[t][i][j][k] += f[t-][i+][j-][k]*j/sum,
f[t][i][j][k] += f[t-][i][j+][k-]*k/sum;
}
T = read();
while (T--) printf("%.2lf\n",f[read()][read()][read()][read()]);
return ;
}

END

【期望dp】bzoj4832: [Lydsy1704月赛]抵制克苏恩的更多相关文章

  1. BZOJ4832[Lydsy1704月赛]抵制克苏恩——期望DP

    题目描述 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一个游戏,每个玩家拥有一个 30 点血量的 ...

  2. BZOJ4832: [Lydsy1704月赛]抵制克苏恩(期望DP)

    Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 913  Solved: 363[Submit][Status][Discuss] Description ...

  3. BZOJ4832: [Lydsy1704月赛]抵制克苏恩(记忆化&期望)

    Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一个游戏,每个玩家拥有一个 ...

  4. BZOJ4832: [Lydsy1704月赛]抵制克苏恩 (记忆化搜索 + 概率DP)

    题意:模拟克苏恩打奴隶战对对方英雄所造成的伤害 题解:因为昨(今)天才写过记忆化搜索 所以这个就是送经验了 1A还冲了个榜 但是我惊奇的发现我数组明明就比数据范围开小了啊??? #include &l ...

  5. [bzoj4832][Lydsy1704月赛]抵制克苏恩

    题目大意:有一个英雄和若干个所从,克苏恩会攻击$K$次,每次回随机攻击对方的一个人,造成$1$的伤害.现在对方有一名克苏恩,你有一些随从.如果克苏恩攻击了你的一名随从,若这名随从不死且你的随从数量不到 ...

  6. 【bzoj4832】[Lydsy1704月赛]抵制克苏恩 期望dp

    Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一个游戏,每个玩家拥有一个 ...

  7. BZOJ.4832.[Lydsy1704月赛]抵制克苏恩(期望DP)

    题目链接 \(f[s][i][j][k]\)表示还剩\(s\)次攻击,分别有\(i,j,k\)个血量为\(1,2,3\)的奴隶主时,期望受到伤害. 因为期望是倒推,所以这么表示从后往前求,注意\(a, ...

  8. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

  9. 【BZOJ4832】[Lydsy2017年4月月赛]抵制克苏恩 概率与期望

    [BZOJ4832][Lydsy2017年4月月赛]抵制克苏恩 Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q同学会告诉 ...

随机推荐

  1. go系列(6)- beego日志模块的使用

    1.安装日志模块 切换到工作目录,下载日志模块 cd /data/work/go/ go get github.com/astaxie/beego/logs 2.导入日志模块 使用的时候,需要导入模块 ...

  2. windows installer cleanup utility - Windows下卸载神器

    https://windows-installer-cleanup-utility.soft32.com

  3. Leetcode:环形链表2

    题目 给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 解答 这道题真的很巧妙,首先我们有了环形链表1这道题的铺垫,就能方便的判断有无环了,但是题目要求我们找到环形链表的 ...

  4. CC17:猫狗收容所

    题目 有家动物收容所只收留猫和狗,但有特殊的收养规则,收养人有两种收养方式,第一种为直接收养所有动物中最早进入收容所的,第二种为选择收养的动物类型(猫或狗),并收养该种动物中最早进入收容所的. 给定一 ...

  5. codeforces772C

    给一段序列,给你去掉所有数字的顺序,输出每去掉一个数,当前联通的子序列的最大值. 倒着来,每次插入一个数,然后求联通的最大值,线段树每个节点标记一下,区间的左右是否插入了数字,还有如果有数字从左边/右 ...

  6. WAMP3.1.10/Apache 设置站点根目录

    网上的资料很多都不起作用了,都是说修改 WAMP\bin\apache\apache2.4.27\conf\httpd.conf 文件,但是修改了之后完全没有效果!! 最后,稀里糊涂的把 WAMP\b ...

  7. B - Median Pyramid Easy 构造题

    B - Median Pyramid Easy Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statemen ...

  8. .net的基础知识点

    在这个It市场都是风云变化的,都是又市场供需来定的,当年iOS火的一塌糊涂的,现在也出现找不到工作的,满地的出入门者,我就属于其中一个,在一个逼不得已的情况下,开始转行做.net ,我相信当年的很多. ...

  9. Java_面向对象的 static 和 abstract

    static:表示静态的 static:可以用来修饰属性.方法.代码块(或初始化块).内部类. 一.static修饰属性(类变量): public class TestStatic { //stati ...

  10. To run dex in process, the Gradle daemon needs a larger heap

    http://blog.csdn.net/u012995856/article/details/52595653