#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a,b;
int k[20];
ll dp[20][10][2];
ll dfs(int pos,int x,bool lead,bool limit){
if(pos == -1)return !lead;
if(!limit && !lead && dp[pos][x])return dp[pos][x];
int up = limit ? k[pos] : 9;
ll res = 0;
for(int i=0;i<=up;i++){
if(lead){
if(i == 0){
res += dfs(pos-1,x,lead,false);
}
else{
res += (x == i ? 2ll : 1ll) * dfs(pos-1,x,false,limit && k[pos] == i);
}
}
else{
res += (x == i ? 2ll : 1ll) * dfs(pos-1,x,false,limit && k[pos] == i);
}
}
if(!limit && !lead)dp[pos][x] = res;
return res;
}
ll solve(ll x,int z){
int pos = 0;
while(x){
k[pos++] = x%10;
x/=10;
}
return dfs(pos-1,z,true,true);
}
int main(){
scanf("%lld%lld",&a,&b);
for(int i=0;i<=9;i++){
printf("%lld ",solve(b,i) - solve(a-1,i));
}
puts("");
return 0;
}

BZOJ-3679(数位DP)的更多相关文章

  1. BZOJ 3679 数位DP

    思路: f[i][j]表示i位数乘积为j的方案数 j的取值最多5000多种,那就开个map存一下好了 f[i][mp[k*rec[j]]]+=f[i-1][j]; //By SiriusRen #in ...

  2. bzoj 3668 数位DP

    收获: 1.如果有很多位操作,并且不包含+-×/等高级运算,那么可以一位一位考虑,如果求一个最优解,可以尝试逐位确定,这道题因为原始攻击值有范围,那么就需要数位DP. /*************** ...

  3. bzoj 1833 数位dp

    很裸的数位dp. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #defi ...

  4. bzoj 3209 数位DP+欧拉定理

    枚举1的个数,统计有那么多1的数的个数 /************************************************************** Problem: 3209 Us ...

  5. BZOJ - 1026 数位DP

    中文题面,注意st是不可以放到dp里面的,否则每次solve都要清零 注意状态的转移要st&&i==0,因为子结构也可能是st(当高位取0时) 而st是必然合法的 #include&l ...

  6. BZOJ 3209 数位DP

    思路: 先预处理出来组合数 按位做 枚举sum[x]是多少 注意Mod不是一个质数 //By SiriusRen #include <cstdio> using namespace std ...

  7. BZOJ 3679 数字之积 数位DP

    思路:数位DP 提交:\(2\)次 错因:进行下一层\(dfs\)时的状态转移出错 题解: 还是记忆化搜索就行,但是要用\(map\)记忆化. 见代码 #include<cstdio> # ...

  8. [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】

    题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...

  9. [BZOJ 1026] [SCOI 2009] Windy数 【数位DP】

    题目链接:BZOJ - 1026 题目分析 这道题是一道数位DP的基础题,对于完全不会数位DP的我来说也是难题.. 对于询问 [a,b] 的区间的答案,我们对询问进行差分,求 [0,b] - [0,a ...

  10. BZOJ.4513.[SDOI2016]储能表(数位DP)

    BZOJ 洛谷 切了一道简单的数位DP,终于有些没白做题的感觉了...(然而mjt更强没做过这类的题也切了orz) 看部分分,如果\(k=0\),就是求\(\sum_{i=0}^n\sum_{j=0} ...

随机推荐

  1. LeetCode.908-最小差值 1(Smallest Range I)

    这是悦乐书的第348次更新,第372篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第213题(顺位题号是908).给定一个整数数组A,对于每个整数A[i],我们可以选择任 ...

  2. Python面向对象之单例模式

    单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某 一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就 能派上用场. 单例 ...

  3. 题解 P1006 传纸条

    传送门 其实我觉得这个跟P1004挺类似(又是动规) 题解P1004 #include<iostream> #include<cstdio> #include<cstri ...

  4. 1121 - Reverse the lights 思维题

    http://www.ifrog.cc/acm/problem/1121 我看到这些翻转的题就怕,可能要练下这些专题. 我最怕这类题了. 一开始想了下dp, dp[i][0 / 1]表示完成了前i位, ...

  5. This file's format is not supported or you don't specify a correct format. 解决办法

    string path = @"c:\请假统计表.xlsx"; Workbook workBook = new Workbook(); workBook.Open(path); A ...

  6. 记录:swift学习笔记1-2

    swift还在不断的更新做细微的调整,都说早起的鸟儿有虫吃,那么我们早点出发吧,趁着国内绝大多数的coder们还没有开始大范围普遍应用. 网上有些大神说:swift很简单!我不同意这个观点,假如你用h ...

  7. ABAP:parameters的用法

    parameters 1.基础用法 parameters:p0(20) type c. 2.使用DEFAULT后缀为参数指定缺省值. parameters:p1(20) type c default ...

  8. datatables添加长按事件

    长按事件 $.fn.longPress = function (fn) { var timeout = undefined; var $this = this; for (var i = 0; i & ...

  9. socket tcp使用recv接收数据时,返回errno错误代码88

    原因:就是recv函数的第一个参数不是可用的,也就是第一个参数不是建立连接时返回的文件描述符. 解决方法:xxx

  10. Git在Xcode中的配置与使用常见问题总结

    书接上回提出的Git在Xcode中的配置与使用常见问题4个问题 问题1,如何在Xcode中创建代码库,并添加和提交代码到代码库? 问题2,如何在Xcode中提交推送给远程服务器代码库? 问题3,如何在 ...