算法导论17:摊还分析学习笔记(KMP复杂度证明)
在摊还分析中,通过求数据结构的一系列的操作的平均时间,来评价操作的代价。这样,即使这些操作中的某个单一操作的代价很高,也可以证明平均代价很低。摊还分析不涉及概率,它可以保证最坏情况下每个操作的平均性能。
摊还分析有三种常用的技术:
聚合分析,它确定$n$个操作的总代价的上界为$T(n)$,所以每个操作的平均代价为$\frac{{T(n)}}{n}$。每个操作都有相同的摊还代价。
核算法:分析每个操作的摊还代价,不同于聚合分析,每种操作的摊还代价是不同的,核算法将序列中较早的操作的余额作为“信用”储存起来,与数据结构中的特定对象相关联,在随后的操作中,储存的信用可以用来进行支付。
势能法:与核算法类似,也是分析每个操作的代价,但将势能作为一个整体存储,而与数据结构中的某个对象无关。
一、聚合分析
以栈操作为例:
存在3种操作:1、$push$ 2、$pop$ 3、$multipop$
直观地分析复杂度:因为栈的大小最大为$n$,所以$multipop$的最坏情况为$O(n)$,所以,由n个$push$,$pop$,$multipop$组成的操作序列的最坏代价为$O( n^2)$,因为序列可能包含$O(n)$个操作序列。
上面的分析给出的界并不是紧确界,实际上,在一个空栈上执行$n$个$push$, $pop$, $multipop$的操作序列,代价最多为$O(n)$。这是因为,当一个对象压入栈后,至多将其弹出一次。所以,对于一个非空的栈,可以执行的$pop$的次数(包含$multipop$中的$pop$)最多与$push$操作次数一样,即$n$次。所以,对任意的$n$,任意一个由$n$个$push$ , $pop$,$multipop$组成的操作序列,最多花费$O(n)$。所以,每个操作的摊还代价为$O(1)$。
二、核函数
核算法,对不同的操作赋予不同的费用,这个费用就是摊还代价。当一个操作的摊还代价超过实际代价的时候,将差额存入数据结构中的特定对象,存入的差额称为信用。对于后续操作中,摊还代价小于实际代价的情况,信用可以用来支付差额。
因为希望通过分析摊还代价来说明每个操作的平均代价的很小,所以应该确保$n$个操作序列的摊还代价是实际代价的上界。如果${c_i}$ 表示第i个操作的真实代价,而${c'_i}$表示摊还代价,则对于任意的$n$,有:$\sum\limits_{i = 1}^n {{c_i}^\prime } \ge \sum\limits_{i = 1}^n {{c_i}} $。因为信用就是摊还代价和实际代价的差值,即 $\sum\limits_{i = 1}^n {{c_i}^\prime } - \sum\limits_{i = 1}^n {{c_i}} $,所以需要保持数据结构中的总信用永远为非负值。
依然以站操作为例:下面证明,如果按照摊还代价进行缴费,则可以支付任意的$n$个栈操作序列。在$push$操作时,共缴费2美元,其中1美元支付$push$的实际代价,将剩余的1美元存入插入的元素,作为信用。这样,每个插入的元素都具有1美元的信用。这1美元的信用,实际上是用来支付$pop$操作的预付费。当执行一个$pop$的时候,并不缴额外的费用,而是使用信用来支付实际代价。$multipop$也一样。所以,对任意的n个PUSH, POP, MULTIPOP组成的序列,总摊还代价为实际代价的上界,总摊还代价为$O(n)$。
三、势能法
势能法与核算法类似,但是势能法并不将预付代价表示为数据结构中特定对象的信用,而是表示为“势能”。势能是与整个数据结构相关联,而不是某个特定的对象。将势能释放,就可以支付未来操作的代价。
势能法如下:对一个初始数据结构 ${D_0}$执行$n$个操作。对于i = 1, 2,...,n, ${c_i}$表示第i个操作的实际代价, ${D_i}$表示在数据结构 ${D_{i - 1}}$上执行第i个操作得到的数据结构。势函数$\varphi $将每个数据结构${D_i}$映射到一个实数 $\varphi ({D_i})$,这个值就是关联到数据结构 的势。所以,第i个操作的摊还代价为${c'_i} = {c_i} + \varphi ({D_i}) - \varphi ({D_{i - 1}})$。每个操作的摊还代价等于其实际代价加上此操作引起的势能变化。
势能法其实就是核函数的总体分析。
再拿kmp算法是失配回退时使用的摊还分析技术:
这个可以用势能分析法来分析:
关于匹配指针的位置$cur$
操作A:匹配时,$cur + + $;
操作B:失配时,$cur = next[cur - 1]$; (根据不同实现有所出入)
这个 $next[cur - 1] < = cur - 1$ 是成立的。
根据势能分析($cur \ge 0$ 恒成立),我们可以证明,操作A的执行次数一定比操作B要多,两个操作都是$O(1)$。
而操作A的执行次数是很容易分析最坏上界是 $O(n)$
那么 $O(n) = T(A) \ge T(B)$
因此匹配时的时间复杂度$T(A + B) = O(n)$
其实上述操作类似于栈操作,直接类比进行复杂度分析即可。
算法导论17:摊还分析学习笔记(KMP复杂度证明)的更多相关文章
- MIT算法导论——第五讲.Linear Time Sort
本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. ...
- MIT算法导论——第一讲.Analysis of algorithm
本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. ...
- MIT算法导论——第二讲.Solving Recurrence
本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. ...
- MIT算法导论——第四讲.Quicksort
本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. ...
- MIT算法导论——第三讲.The Divide-and-Conquer
本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. ...
- MIT算法导论笔记
详细MIT算法导论笔记 (网络链接) 第一讲:课程简介及算法分析 (Sheridan) 第二讲:渐近符号.递归及解法 (Sheridan) 第三讲:分治法(1)(Sheridan) 第四讲:快排及随 ...
- 算法导论笔记:18B树
磁盘作为辅存,它的容量要比内存大得多,但是速度也要慢许多,下面就是磁盘的的结构图: 磁盘驱动器由一个或多个盘片组成,它们以固定的速度绕着主轴旋转,数据存储于盘片的表面,磁盘驱动器通过磁臂末尾的磁头来读 ...
- [置顶] 《算法导论》习题解答搬运&&学习笔记 索引目录
开始学习<算法导论>了,虽然是本大部头,可能很难一下子看完,我还是会慢慢地研究的. 课后的习题和思考有些是很有挑战性的题目,我等蒻菜很难独立解决. 然后发现了Google上有挺全的algo ...
- 《算法导论》读书笔记之排序算法—Merge Sort 归并排序算法
自从打ACM以来也算是用归并排序了好久,现在就写一篇博客来介绍一下这个算法吧 :) 图片来自维基百科,显示了完整的归并排序过程.例如数组{38, 27, 43, 3, 9, 82, 10}. 在算法导 ...
随机推荐
- python(10)- 字符编码
一 什么是编码? 基本概念很简单.首先,我们从一段信息即消息说起,消息以人类可以理解.易懂的表示存在.我打算将这种表示称为“明文”(plain text).对于说英语的人,纸张上打印的或屏幕上显示的英 ...
- [转] git clone 远程分支
git clone只能clone远程库的master分支,无法clone所有分支,解决办法如下: 找一个干净目录,假设是git_work cd git_work git clone http://my ...
- 基于flask做权限控制
和Django实现的原理类似,有时间补充
- FALSE_IT
本文讲一个实用的语法糖(suger),很不错,攻克了我实际工作中的问题. 如果你写了这样一个类: class Executor { int step1(); void step2(); int ste ...
- 如何使Htm页面使用IE9文档模式
修改Htm页面的方法之一是,在Head->Title下添加<META http-equiv="X-UA-Compatible" content="IE=9&q ...
- 脱了裤子放屁之std::string
一个天天跟c#奋斗的苦逼c++程序猿 改自己曾经代码的时候发现有例如以下几行. char szPath[MAX_PATH] = {0}; GetModuleFileNameA(NULL,szPath, ...
- sanic官方文档解析之Deploying(部署)和Extension(扩展)
1,Deploying(部署) 通过内置的websocket可以很简单的部署sanic项目,之后通过实例sanic.Sanic,我们可以运行run这个方法通过接下来的关键字参数 host (defau ...
- SAM4E单片机之旅——12、USART
清楚了UART的用法之后,现在来研究一下USART的用法.和上一次差不多,这次也通过USART的串口来实现和PC的通信.和上一次不同的是,USART本身就有接收超时的功能,所以这次就不用TC了. US ...
- LogStash 日志搜集
安装 下载:https://download.elastic.co/logstash/logstash/logstash-2.4.0.tar.gz 解压到指定目录即可 配置 bin目录添加logsta ...
- 九度OJ 1126:打印极值点下标 (基础题)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4613 解决:1646 题目描述: 在一个整数数组上,对于下标为i的整数,如果它大于所有它相邻的整数, 或者小于所有它相邻的整数,则称为该整 ...