一. 题目描写叙述

Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

The update(i, val) function modifies nums by updating the element at index i to val.

Example:

Given nums = [1, 3, 5]

sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8

Note:

The array is only modifiable by the update function.

You may assume the number of calls to update and sumRange function is distributed evenly.

二. 题目分析

题目在Range Sum Query - Immutable一题的基础上添加的难度,要求在输入数组nums后,可以改动数组的元素,每次仅仅改动一个元素。相同要实现求数组的某个区间和的功能。

假设在http://blog.csdn.net/liyuefeilong/article/details/50551662 一题的做法上稍加改进。是可以实现功能的,可是会超时。

这时阅读了一些文章后才发现原来经典的做法(包含前一题)是使用树状数组来维护这个数组nums。其插入和查询都能做到O(logn)的复杂度,十分巧妙。

关于树状数组,下面博文描写叙述得非常好:

http://blog.csdn.net/int64ago/article/details/7429868

三. 演示样例代码

// 超时
class NumArray {
public:
NumArray(vector<int> &nums) {
if (nums.empty()) return;
else
{
sums.push_back(nums[0]);
//求得给定数列长度
int len = nums.size();
for (int i = 1; i < len; ++i)
sums.push_back(sums[i - 1] + nums[i]);
}
} void update(int i, int val) {
for (int k = i; k < nums.size(); ++k)
sums[k] += (val - nums[i]);
nums[i] = val;
} int sumRange(int i, int j) {
return sums[j] - sums[i - 1];
} private:
vector<int> nums;
//存储数列和
vector<int> sums;
}; // Your NumArray object will be instantiated and called as such:
// NumArray numArray(nums);
// numArray.sumRange(0, 1);
// numArray.update(1, 10);
// numArray.sumRange(1, 2);
// 使用树状数组实现的代码AC,复杂度为O(logn)
class NumArray {
private:
vector<int> c;
vector<int> m_nums;
public:
NumArray(vector<int> &nums) {
c.resize(nums.size() + 1);
m_nums = nums;
for (int i = 0; i < nums.size(); i++){
add(i + 1, nums[i]);
}
} int lowbit(int pos){
return pos&(-pos);
} void add(int pos, int value){
while (pos < c.size()){
c[pos] += value;
pos += lowbit(pos);
}
}
int sum(int pos){
int res = 0;
while (pos > 0){
res += c[pos];
pos -= lowbit(pos);
}
return res;
} void update(int i, int val) {
int ori = m_nums[i];
int delta = val - ori;
m_nums[i] = val;
add(i + 1, delta);
} int sumRange(int i, int j) {
return sum(j + 1) - sum(i);
}
};
// Your NumArray object will be instantiated and called as such:
// NumArray numArray(nums);
// numArray.sumRange(0, 1);
// numArray.update(1, 10);
// numArray.sumRange(1, 2);

四. 小结

之前仅仅是听过,这是第一次使用树状数组,这是维护数组的一个非常好的思想。须要深入学习!

leetcode笔记:Range Sum Query - Mutable的更多相关文章

  1. [Leetcode Week16]Range Sum Query - Mutable

    Range Sum Query - Mutable 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/range-sum-query-mutable/de ...

  2. [LeetCode] 307. Range Sum Query - Mutable 区域和检索 - 可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  3. leetcode@ [307] Range Sum Query - Mutable / 线段树模板

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  4. [LeetCode] 307. Range Sum Query - Mutable 解题思路

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  5. LeetCode - 307. Range Sum Query - Mutable

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  6. Leetcode 2——Range Sum Query - Mutable(树状数组实现)

    Problem: Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), ...

  7. leetcode 307. Range Sum Query - Mutable(树状数组)

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  8. LeetCode 308. Range Sum Query 2D - Mutable

    原题链接在这里:https://leetcode.com/problems/range-sum-query-2d-mutable/ 题目: Given a 2D matrix matrix, find ...

  9. 【刷题-LeetCode】307. Range Sum Query - Mutable

    Range Sum Query - Mutable Given an integer array nums, find the sum of the elements between indices ...

  10. [LeetCode] 303. Range Sum Query - Immutable 区域和检索 - 不可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

随机推荐

  1. css 禁止文本被选中复制代码

    css 禁止文本被选中复制代码: .cus-text{ -webkit-user-select: none; -moz-user-select: none; -ms-user-select: none ...

  2. linux上使用chrome自动化测试(无界面)

    selenium自动化测试主要是用于有图形界面的系统上,对于无图形界面的情况可以通过以下方法来实现 服务器信息 [root@spider01 ~]# hostnamectl Static hostna ...

  3. BZOJ 4033[HAOI2015] 树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3188  Solved: 1366[Submit][Stat ...

  4. [洛谷P1352][codevs1380]没有上司的舞会

    题目大意:某大学有N个职员,编号为1~N.他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但如果某个职员的上司来参加舞 ...

  5. C/C++ ShellExecuteEx调用exe可执行文件

    本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/49591995 以商业的软件Enblen ...

  6. Leetcode-Best Time to Buy and Sell Stock -java

    题目: Say you have an array for which the ith element is the price of a given stock on day i. If you w ...

  7. Android 开发者不得不面对的六个问题

    一份关于移动应用开发的调查报告显示,Androdid开发者对谷歌的移动操作系统平台的兴趣正在下降.尽管依然有79%的开发者表示对Android “非常感兴趣”,但调查报告显示,一些迹象表明在2012到 ...

  8. HDU 2222 Keywords Search AC自己主动机入门题

    单词统计的题目,给出一些单词,统计有多少单词在一个文本中出现,最经典的入门题了. AC自己主动机的基础: 1 Trie. 以这个数据结构为基础的,只是添加一个fail指针和构造fail的函数 2 KM ...

  9. POJ 3368 Frequent values(RMQ 求区间出现最多次数的数字的次数)

    题目链接:http://poj.org/problem? id=3368 Description You are given a sequence of n integers a1 , a2 , .. ...

  10. C++ 学习笔记(一些新特性总结3)

    C++ 学习笔记(一些新特性总结3) public.protected 和 private 继承 public 继承时,基类的存取限制是不变的. class MyClass { public: // ...