https://www.luogu.org/problem/show?pid=1043

题目描述

丁丁最近沉迷于一个数字游戏之中。这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易。游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分为m个部分,各部分内的数字相加,相加所得的m个结果对10取模后再相乘,最终得到一个数k。游戏的要求是使你所得的k最大或者最小。

例如,对于下面这圈数字(n=4,m=2):

要求最小值时,((2-1) mod 10)×((4+3) mod 10)=1×7=7,要求最大值时,为((2+4+3) mod 10)×(-1 mod 10)=9×9=81。特别值得注意的是,无论是负数还是正数,对10取模的结果均为非负值。

丁丁请你编写程序帮他赢得这个游戏。

输入输出格式

输入格式:

输入文件第一行有两个整数,n(1≤n≤50)和m(1≤m≤9)。以下n行每行有个整数,其绝对值不大于104,按顺序给出圈中的数字,首尾相接。

输出格式:

输出文件有两行,各包含一个非负整数。第一行是你程序得到的最小值,第二行是最大值。

输入输出样例

输入样例#1:

4 2
4
3
-1
2
输出样例#1:

7
81 环->破换成链。
f[i][j][k] 表示 在[i,j]区间内 化成 h个部分 的最值
求出前缀和 枚举h,左右端点以及断点-->>f[i][j][h]=(f[i][k-1][h-1]*(sum[j]-sum[k-1])
 #include <cstdio>

 #define INF (1e7)
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b) using namespace std; const int N();
int n,m,num[N],sum[N];
int f_min[N][N][],f_max[N][N][],maxn,minn=INF; int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",num+i),num[i+n]=num[i];
for(int i=;i<=(n<<);i++)
sum[i]+=sum[i-]+num[i];
for(int i=;i<=(n<<);i++)
for(int j=i;j<=(n<<);j++)
for(int k=;k<=m;k++)
{
if(k==)
{
f_min[i][j][k]=((f_min[i][j-][k]+num[j])%+)%;
f_max[i][j][k]=((f_max[i][j-][k]+num[j])%+)%;
}
else f_min[i][j][k]=INF;
}
for(int h=;h<=m;h++)
for(int i=;i<=(n<<);i++)
for(int j=h+i-;j<=(n<<);j++)
for(int k=h+i-;k<=j;k++)
{
f_min[i][j][h]=min(f_min[i][j][h],f_min[i][k-][h-]*(((sum[j]-sum[k-])%+)%));
f_max[i][j][h]=max(f_max[i][j][h],f_max[i][k-][h-]*(((sum[j]-sum[k-])%+)%));
}
for(int i=;i<=n;i++)
{
minn=min(minn,f_min[i][i+n-][m]);
maxn=max(maxn,f_max[i][i+n-][m]);
}
printf("%d\n%d\n",minn,maxn);
return ;
}

洛谷——P1043 数字游戏的更多相关文章

  1. 洛谷P1043 数字游戏

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  2. 洛谷 P1043 数字游戏 区间DP

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  3. 洛谷 P1043 数字游戏(区间dp)

    题目链接:https://www.luogu.com.cn/problem/P1043 这道题与石子合并很类似,都是把一个环强制改成一个链,然后在链上做区间dp 要初始化出1~2n的前缀和,方便在O( ...

  4. 洛谷P1043数字游戏

    题目 区间DP,将\(maxn[i][j][k]\)表示为i到j区间内分为k个区间所得到的最大值,\(minn\)表示最小值. 然后可以得到状态转移方程: \[maxn[i][j][k]= max(m ...

  5. 洛谷 P1043 数字游戏

    题目传送门 解题思路: 跟石子合并差不多,区间DP(环形),用f[i][j][s]表示从i到j分成s段所能获得的最大答案,枚举断点k,则f[i][j][s] = min(f[i][j][s],f[i] ...

  6. 洛谷 P5660 数字游戏 & [NOIP2019普及组]

    传送门 洛谷改域名了QAQ 解题思路 没什么好说的,一道红题,本不想发这篇博客 ,但还是尊重一下CCF吧QAQ,怎么说也是第一年CSP呢! 用getchar一个个读入.判断.累加,最后输出即可. 不过 ...

  7. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  8. 洛谷P1118 数字三角形游戏

    洛谷1118 数字三角形游戏 题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直 ...

  9. 洛谷P1553 数字翻转(升级版)

    题目链接 https://www.luogu.org/problemnew/show/P1553 题目描述 给定一个数,请将该数各个位上数字反转得到一个新数. 这次与NOIp2011普及组第一题不同的 ...

随机推荐

  1. java 获取类路劲注意点

    在resin里用MyConstants.class.getResource("/").getPath(),这个方法时,获取到的路劲少[项目名称],最好用MyConstants.cl ...

  2. spark 数据预处理 特征标准化 归一化模块

    #We will also standardise our data as we have done so far when performing distance-based clustering. ...

  3. php7-swoole-Class 'swoole_websocket_server' not found 问题

    标签(空格分隔): php 分析 nginx/apache 读取的php.uini 文件 和 cli模式的php.ini 文件不同导致的 swoole是在cli模式下运行的 或许你安装swoole扩展 ...

  4. 当fastJson邂逅大写字段时

    在项目中遇到了一件令人头疼的事.使用fastJson反序列化时下面的Json时,得到对象属性总为null(如下图),可能细心的朋友一看就知道问题出在哪里,没错!问题就出在返回的字段首字母给大写了.fa ...

  5. TabHost的自定义

    使用自定义的TabHost可以不用继承TabActicity,但是要注意的是如果使用Activity作为Content的话,有两处代码是一定要加的.不然就会出现RuntimeError,还有在XML布 ...

  6. 谈谈Vim中实用又好记的一些命令

      本文的目的在于总结一些日常操作中比较实用.有规律的Vim命令,而不致于介绍一些基础的Vim知识,比如几种插入模式,hjkl移动命令,dd删除本行,p粘贴 等等,故对Vim基本知识不够熟悉的请参见其 ...

  7. 禁用cache

    Z:\src\services\network\network_context.cc:http_cache_enabled

  8. 运维派 企业面试题2 创建10个 "十个随机字母_test.html" 文件

    Linux运维必会的实战编程笔试题(19题) 企业面试题2: 使用for循环在/tmp/www目录下通过随机小写10个字母加固定字符串test批量创建10个html文件,名称例如为: --[root@ ...

  9. struts2文件上传需要注意的

    ① 必须封装三个字段:文件.文件类型.文件名,而且这三个字段的名字的前面几个字母是一样的 如: private File upload; private String uploadContentTyp ...

  10. VC双缓冲画图技术介绍

    双缓冲画图,它是一种主要的图形图像画图技术.首先,它在内存中创建一个与屏幕画图区域一致的对象,然后将图形绘制到内存中的这个对象上,最后把这个对象上的图形数据一次性地拷贝并显示到屏幕上. 这样的技术能够 ...