时序分析:ARIMA模型(非平稳时间序列)
ARIMA模型意为求和自回归滑动平均模型(IntergratedAut少regressive MovingAverageModel),简记为ARIMA(p,d,q),p,q分别为自回归和滑动平均部分的阶次,d为差分运算阶次,对于某些非平稳时间序列{ y(t) },其一般形式为
若将(1-B)^d *y(t) 记为 z(t),则上式即是ARMA模型。
可通过差分方法求出增量序列:Deta y(t) = y(t) - y(t-1) (t=1,2,…,N)· 经过一次差分后,如果此增量序列{ Deta y(t) }是平稳的,那么对{ Deta y(t) }建立模型,表示为:
以上对非平稳时间序列{ Deta y(t) } 作一次差分称为一阶差分· 将这种思路推广, 当采用一阶差分还不能使 { Deta y(t) } 成为平稳时间序列时 , 还可采用高阶(d阶) 差分 ,以使 { Deta^d *y(t) }成为平稳时间序列, 再对{ Deta^d *y(t) }建立ARMA模型 ,然后根据差分算子v与后移算子B的关系(v=1一B),得到非平稳时间序列{ y(t) }的ARIMA模型,这就是ARIMA模型法的基本思路.
虽然足够多次的差分运算可以充分地提取原序列中的非平稳确定性信息,但过度的差分也会造成有用信息的浪费一般而言,若某时间序列具有线性的趋势,则可以对其进行一次差分而将线性趋势剔除掉;若某时间序列具有指数的趋势,则可以取对数将指数趋势化为线性趋势,然后再进行差分以消除线性趋势,接着对差分后的序列拟合ARMA模型进行分析与预测,最后再通过差分的反运算得到{y(t) }预测值.
时序分析:ARIMA模型(非平稳时间序列)的更多相关文章
- 时间序列算法(平稳时间序列模型,AR(p),MA(q),ARMA(p,q)模型和非平稳时间序列模型,ARIMA(p,d,q)模型)的模型以及需要的概念基础学习笔记梳理
在做很多与时间序列有关的预测时,比如股票预测,餐厅菜品销量预测时常常会用到时间序列算法,之前在学习这方面的知识时发现这方面的知识讲解不多,所以自己对时间序列算法中的常用概念和模型进行梳理总结(但是为了 ...
- 用R做时间序列分析之ARIMA模型预测
昨天刚刚把导入数据弄好,今天迫不及待试试怎么做预测,网上找的帖子跟着弄的. 第一步.对原始数据进行分析 一.ARIMA预测时间序列 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之 ...
- ARIMA模型——本质上是error和t-?时刻数据差分的线性模型!!!如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理!ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数
https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻 ...
- 时间序列预测之--ARIMA模型
什么是 ARIMA模型 ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model).也记作ARIM ...
- 时间序列分析模型——ARIMA模型
时间序列分析模型——ARIMA模型 一.研究目的 传统的经济计量方法是以经济理论为基础来描述变量关系的模型.但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左 ...
- 基于R语言的ARIMA模型
A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及 ...
- ARIMA模型总结
时间序列建模基本步骤 获取被观测系统时间序列数据: 对数据绘图,观测是否为平稳时间序列:对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列: 经过第二步处理,已经得到平稳时间序列.要对平稳时间序 ...
- 时间序列模式——ARIMA模型
ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins ...
- ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)
ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...
随机推荐
- vim学习3-查找替换
一.字符的替换及撤销(Undo操作) 1.替换和撤销(Undo)命令 替换和Undo命令都是针对普通模式下的操作 命令 说明 r+<待替换字母> 将游标所在字母替换为指定字母 R 连续替换 ...
- JavaScript学习总结(7)——JavaScript基础知识汇总
- MySql数据库优化可以从哪几个方面进行?
1.选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快.因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽 ...
- noi.openjudge——2971 抓住那头牛
http://noi.openjudge.cn/ch0205/2971/ 总时间限制: 2000ms 内存限制: 65536kB 描述 农夫知道一头牛的位置,想要抓住它.农夫和牛都位于数轴上,农夫 ...
- [转]十五天精通WCF——第四天 你一定要明白的通信单元Message
转眼你已经学了三天的wcf了,是不是很好奇wcf在传输层上面到底传递的是个什么鸟毛东西呢???应该有人知道是soap,那soap这叼毛长得是什么 样呢?这一篇我们来揭开答案... 一:soap到底长成 ...
- ERROR: mount point </.alt.rootd3_EISMar14/opt/oracle/product/10.2> is already in use
在给solaris系统升级的时候,用lu方法遇到下面的错误. -bash-3.2# lumount rootd3_EISMar14 ERROR: mount point </.alt.rootd ...
- 网络银行木马DYRE知多少(1)
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaXF1c2hp/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/d ...
- Unity3d-反编译C#和提取资源
使用MonoDevelop查看代码 1.解压缩一个Ipa文件,找到如下目录 2.拖拽一个Assembly-CSharp.dll文件到MonoDevelop工具栏,即可查看C#代码 其他C#反编译工具: ...
- 跨平台C++开源码的两种经常使用编译方式
作者:朱金灿 来源:http://blog.csdn.net/clever101 跨平台C++开源代码为适应各种编译器的编译,採用了两种方式方面来适配.一种是makefile方式.以著名的空间数据格式 ...
- Swift基本常识点
import Foundation // 单行注释 // 多行注释(支持嵌套,OC是不支持的) // 常量let,初始化之后就不可改变. // 常量的具体类型可以自动识别,等号后面是什么类型,它就是什 ...