题意

给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0。请找到最长的一段连续区间,使得该区间内所有数字之和不超过p。

(1<=d<=n<=2000000,0<=p<=10^16)

题解

一看以为是DP结果想了半天想不出来。(其实有点像)

然后又以为是单调队列套单调队列。。。(我也不知到这是什么)

但跟答案很像了,就差一点。

假如给定选择区间,一定要去掉和最大的连续d个数。

所以我们枚举以右端点r,用单调对列维护当前区间内最大的连续d个数的值。

在区间扩展时(r++)我们判断当前区间在去掉最大的连续d个数的值之后是否大于p

若大于p则l++更新单调队列。对于每一个右端点都有一个最优解。取最大就好了。

o(n)

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const long long N=;
long long n,p,d,a[N],sum1[N],sum[N],q[N],l,head,tail,tot,ans;
int main(){
scanf("%lld%lld%lld",&n,&p,&d);
for(long long i=;i<=n;i++){
scanf("%lld",&a[i]);
sum1[i]=sum1[i-]+a[i];
}
for(long long i=;i<=d;i++){
sum[i]=sum1[i];
}
for(long long i=d+;i<=n;i++){
sum[i]=sum1[i]-sum1[i-d];
}
// for(int i=1;i<=n;i++){
// cout<<sum[i]<<" ";
// }
// cout<<endl;
head=;
tail=;
l=;
for(long long i=;i<=n;i++){
tot+=a[i];
while(sum[i]>=sum[q[tail]]&&head<=tail)tail--;
q[++tail]=i;
while(tot-sum[q[head]]>p&&head<=tail){
tot-=a[l];
l++;
while(q[head]-d<l&&head<=tail)head++;
}
ans=max(ans,i-l+);
}
printf("%lld",ans);
return ;
}

[POI2015]WIL-Wilcze doły(单调队列)的更多相关文章

  1. BZOJ4385[POI2015]Wilcze doły——单调队列+双指针

    题目描述 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段连续区间,使得该区间内所有数字之和不超过p. 输入 第一行包含三个整数n,p ...

  2. 【BZOJ4385】[POI2015]Wilcze doły 单调栈+双指针法

    [BZOJ4385][POI2015]Wilcze doły Description 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段 ...

  3. [bzoj4385][POI2015]Wilcze doły_单调队列

    Wilcze doły bzoj-4385 POI-2015 题目大意:给定一个n个数的序列,可以将连续的长度不超过d的区间内所有数变成0,求最长的一段区间,使得区间和不超过p. 注释:$1\le n ...

  4. BZOJ 4385: [POI2015]Wilcze doły

    4385: [POI2015]Wilcze doły Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 648  Solved: 263[Submit][ ...

  5. [POI2015]Wilcze doły

    [POI2015]Wilcze doły 题目大意: 给定一个长度为\(n(n\le2\times10^6)\)的数列\(A(1\le A_i\le10^9)\),可以从中选取不超过\(d\)个连续数 ...

  6. Luogu3587[POI2015]POD - hash + 单调队列

    Solution 还是去看了题解. 感谢大佬的博客→  题解传送门 是一道思路比较新的题. 搞一个前缀和, 记录前 $i$ 个位置每种颜色的出现次数, 如果位置 $i$ 是 颜色 $a[i]$ 的最后 ...

  7. BZOJ4385 : [POI2015]Wilcze doły

    求出前缀和$s$,设$f[i]=s[i+d-1]-s[i-1]$. 从左到右枚举的右端点$i$,左端点$j$满足单调性,若$s[i]-s[j-1]-\max(区间内最大的f)\leq p$,则可行. ...

  8. 【bzoj4385】[POI2015]Wilcze doły

    单调队列扫描,记录当前区间长度为d的一段的和的最大值,和当前区间和. #include<algorithm> #include<iostream> #include<cs ...

  9. DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)

    前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...

随机推荐

  1. Kettle的四大不同环境工具

    不多说,直接上干货! kettle里有不同工具,分别用于ETL的不同阶段. 初学者,建议送Spoon开始.高手,是四大工具都会用. Sqoop: 图形界面工具,快速设计和维护复杂的ETL工作流.集成开 ...

  2. Scalable, Distributed Systems Using Akka, Spring Boot, DDD, and Java--转

    原文地址:https://dzone.com/articles/scalable-distributed-systems-using-akka-spring-boot-ddd-and-java Whe ...

  3. 51nod 1307 绳子与重物 (标记父节点更新即可)

    1307 绳子与重物 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 有N条绳子编号 0 至 N - 1,每条绳子后面栓了一个重物重量为Wi,绳子的最大负重为Ci. ...

  4. php查询字符串是否存在 strpos

    /*** 查询字符是否存在于某字符串** @param $haystack 字符串* @param $needle 要查找的字符* @return bool*/function str_exists( ...

  5. FCC高级编程篇之Validate US Telephone Numbers

    Validate US Telephone Numbers Return true if the passed string is a valid US phone number. The user ...

  6. (五)Redux入门

    1 Redux概念简述 flux推出的时候有一些缺点.比如store可以存在多个,不是特别好用 于是逐渐进化为了redux. 2 Redux的工作流程 拿借书作举例: action creators是 ...

  7. Lorenzini:Laplacian与图上的黎曼-罗赫定理

    前两天去听了一下搞代数几何的Dino Lorenzini在交大的两场讲座(“On Laplacian Of Graphs and Generalization”,“Riemann-Roch Theor ...

  8. ActiveMQ学习总结(9)——Linux中安装ActiveMQ

    1.新建一个文件夹activeMQ   mkdir /server 2.授权    chmod 777 /server 3.下载activeMQ安装包,拷贝到/activeMQ目录下 apache-a ...

  9. [Typescript] Installing Promise Type Definitions Using the lib Built-In Types

    To fix Promise is not recolized in TypeScript, we can choose to use a lib: npm i @types/es6-promise ...

  10. 9、包、访问控制、import、static、static代码块、final、抽象类、接口、instanceof、多态

    1.包 三级命名:公司的尾缀(com).公司名字(baidu).业务(Sale) java.lang:默认包:String.Math,Object,System java.util:工具包 java. ...