BUPT2017 springtraining(16) #4 ——基础数论
题目在这里
A.手动打表找规律得组合数
n -= 2, m -= 2, ans = C(n, m)
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int Mod = 1e9 + ; ll fac[]; ll calc(ll x, int k = Mod - ) {
ll ret = ;
for(;k;k >>= , x = x * x % Mod)
if(k & ) ret = ret * x % Mod;
return ret;
} int main() {
ios::sync_with_stdio(false);
int n, m;
fac[] = fac[] = ;
for(int i = ;i <= ;i ++)
fac[i] = fac[i - ] * i % Mod;
while(cin >> n >> m) {
if(n > m) swap(n, m);
cout << fac[m + n - ] * calc(fac[n - ]) % Mod * calc(fac[m - ]) % Mod << endl;
}
return ;
}
B.
C.裸快速幂
#include <cstdio> using namespace std; double x = 1.000000011; double n; long long k; int main() {
scanf("%lf %lld", &n, &k);
for(;k;k >>= , x = x * x)
if(k & ) n = n * x;
printf("%.8f\n", n);
return ;
}
D.递推式那么明显当然是矩阵快速幂啦
唯一需要注意的是,自乘矩阵的填充方式...
开始时,a1 对应 f(d) , a2 对应 f(d - 1) ...
#include <bits/stdc++.h> using namespace std; typedef long long ll; int d, n, m; struct matrix1{
ll c[][];
matrix1() {
memset(c, , sizeof c);
}
void init() {
memset(c, , sizeof c);
for(int i = ;i < d;i ++) cin >> c[d - - i][d - ], c[d - - i][d - ] %= m;
for(int i = ;i < d;i ++) c[i][i - ] = ;
}
matrix1 operator *(const matrix1 &a) const {
matrix1 ret;
for(int k = ;k < d;k ++)
for(int i = ;i < d;i ++)
if(c[i][k])
for(int j = ;j < d;j ++)
ret.c[i][j] = (ret.c[i][j] + c[i][k] * a.c[k][j]) % m;
return ret;
}
}; struct matrix2{
ll c[];
matrix2() {
memset(c, , sizeof c);
}
void init() {
memset(c, , sizeof c);
for(int i = ;i < d;i ++) cin >> c[i], c[i] %= m;
}
matrix2 operator *(const matrix1 &a) const {
matrix2 ret;
for(int i = ;i < d;i ++)
for(int j = ;j < d;j ++)
ret.c[i] = (ret.c[i] + c[j] * a.c[j][i]) % m;
return ret;
}
}; int main() {
matrix1 c1;
matrix2 c2;
while(cin >> d >> n >> m, d != ) {
c1.init(), c2.init();
for(n --;n;n >>= , c1 = c1 * c1)
if(n & ) c2 = c2 * c1;
cout << c2.c[] << endl;
}
return ;
}
E.参考 CodeForces - 785D
F.看样例猜结论就好了
输出所有质数的幂就好了
#include <iostream> using std::cin;
using std::endl;
using std::cout; int n, v[], p[]; int main() {
cin >> n;
for(int i = ;i <= n;i ++) {
if(!v[i]) {
for(int j = i;j <= n;j *= i)
p[++ p[]] = j;
}
for(int j = i << ;j <= n;j += i)
v[j] = ;
}
cout << p[] << endl;
for(int i = ;i <= p[];i ++)
cout << p[i] << " ";
return ;
}
G.参考 CodeForces - 785C
H.
I.能被 6 整除一定能被 2 和 3 整除,8 和 9 同理
于是就是求 1 - n 内2 3 5 7的倍数之和
容斥原理即可
#include <iostream> using namespace std; int main() {
long long n;
cin >> n;
cout << n - n / - n / - n / - n / + n / + n / + n / + n / + n / + n / - n / - n / - n / - n / + n / ;
return ;
}
J.
K.对于n 的每一个因数 t
它对答案贡献为 t * phi(n / t)
效率玄学吧
#include <cstdio> int v[], p[]; int phi(int x) {
int ret = x;
for(int i = ;1ll * p[i] * p[i] <= x;i ++)
if(x % p[i] == ) {
ret = ret - ret / p[i];
while(x % p[i] == ) x /= p[i];
}
if(x != ) ret -= ret / x;
return ret;
} int main() {
long long n, ans;
for(int i = ;i < ;i ++) {
if(!v[i]) p[++ p[]] = i;
for(int j = ;j <= p[] && p[j] * i < ;j ++) {
v[p[j] * i] = ;
if(i % p[j] == ) break;
}
}
while(scanf("%lld", &n) != EOF) {
ans = ;
for(long long i = ;i * i <= n;i ++) {
if(n % i) continue;
ans += i * phi(n / i);
if(i * i != n) ans += n / i * phi(i);
}
printf("%lld\n", ans);
}
return ;
}
L.和式加一项减一项变成了C(n + m, n)
n,m 大 p 小且 p 保证为质数,使用卢卡斯定理
Lucas(n,m) % p = Lucas(n / p,m / p) * Comb(n % p,m % p) % p
注意lucas里面的取模后计算组合数,可能会出现 C(n,m) 里 n < m
所以Comb函数里需要判断的
考虑 p 为读入的不能预处理,所以我们有两种解决方案
1.每组数据 O(p) 预处理处阶乘 fac
Comb就可以 O(logn) 回答,理论效率 O(p + logn * log(p)(n + m))
大概就是 O(p)
#include <bits/stdc++.h> using namespace std; typedef long long ll; int t, n, m, p; ll fac[]; ll calc(ll x, int k = p - ) {
ll ret = ;
for(;k;k >>= , x = x * x % p)
if(k & ) ret = ret * x % p;
return ret;
} ll C(int n, int m) {
if(n < m) return ;
return fac[n] * calc(fac[m]) % p * calc(fac[n - m]) % p;
} ll lucas(int n, int m) {
if(!m) return ;
return C(n % p, m % p) * lucas(n / p, m / p) % p;
} int main() {
ios::sync_with_stdio(false);
fac[] = ;
cin >> t;
while(t --) {
cin >> n >> m >> p;
for(int i = ;i < p;i ++) fac[i] = fac[i - ] * i % p;
cout << lucas(n + m, n) << endl;
}
return ;
}
2.不进行预处理,Comb直接 O(p + logn) 回答
理论效率O(p * log(p)(n + m))
#include <bits/stdc++.h> using namespace std; typedef long long ll; int t, n, m, p; ll calc(ll x, int k = p - ) {
ll ret = ;
for(;k;k >>= , x = x * x % p)
if(k & ) ret = ret * x % p;
return ret;
} ll C(int n, int m) {
if(n < m) return ;
ll ret1 = , ret2 = ;
for(int i = , j = n;i <= m;i ++, j --) {
ret1 = ret1 * i % p;
ret2 = ret2 * j % p;
}
return ret2 * calc(ret1) % p;
} ll lucas(int n, int m) {
if(!m) return ;
return C(n % p, m % p) * lucas(n / p, m / p) % p;
} int main() {
ios::sync_with_stdio(false);
cin >> t;
while(t --) {
cin >> n >> m >> p;
cout << lucas(n + m, n) << endl;
}
return ;
}
然而第二种的表现更好...因为都是最坏时间估计
而第一种稳定在O(p),第二种实际是几倍优于最坏效率的
M.
BUPT2017 springtraining(16) #4 ——基础数论的更多相关文章
- BUPT2017 springtraining(16) #2 ——基础数据结构
题目在这里 A.似乎是个并查集+??? B.10W的范围,似乎可以暴力来一发二分+sort? 但我猜正解可以O(nlogn)? C.单调队列入门题目 #include <cstdio> ] ...
- BUPT2017 springtraining(16) #1 题解
https://vjudge.net/contest/162590 A: 不难发现,当L=R时输出L,当L<R时输出2. B: 贪心得配对.1和n配 2和n-1配,对与对直接只要花1个代价就可以 ...
- BUPT2017 springtraining(16) #6 ——图论
题目链接 A.容易发现最后字符的对应都是一对一的 或者说我们没办法出现最后多对一或者一对多的情况 所以只要算出 ‘a’ - 'z' 每个字符最后对应的字符即可 #include <cstdio& ...
- BUPT2017 springtraining(16) #3 ——搜索与动态规划
题目在这里啊 A.最长上升子序列,范围很小所以写了简单的O(n^2)算法 #include <iostream> #define rep(i, j, k) for(int i = j;i ...
- BUPT2017 springtraining(16) #1 ——近期codeforces简单题目回顾
这里是contest 8道题全部来源于 cf 的两场contest (出题人可真懒啊 Codeforces Round #411 (Div. 2)的ABCDE Codeforces Round #40 ...
- LightOJ1214 Large Division 基础数论+同余定理
Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...
- HDU-1576 A/B 基础数论+解题报告
HDU-1576 A/B 基础数论+解题报告 题意 求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973) (我们给定的A必能被B整除,且gcd(B,9973) = 1). 输入 数据 ...
- RSA算法原理——(2)RSA简介及基础数论知识
上期为大家介绍了目前常见加密算法,相信阅读过的同学们对目前的加密算法也算是有了一个大概的了解.如果你对这些解密算法概念及特点还不是很清晰的话,昌昌非常推荐大家可以看看HTTPS的加密通信原理,因为HT ...
- ACM&OI 基础数论算法专题
ACM&OI 基础数学算法专题 一.数论基础 质数及其判法 (已完结) 质数的两种筛法 (已完结) 算数基本定理与质因数分解 (已完结) 约数与整除 (已完结) 整除分块 (已完结) 最大公约 ...
随机推荐
- B1877 [SDOI2009]晨跑 费用流
其实之前写过一个板子,但是一点印象都没有,所以今天重写了一下,顺便把这个题当成板子就行了. 其实费用流就是把bfs换成spfa,但是中间有一个原则,就是费用优先,在费用(就是c)上跑spfa,顺便求出 ...
- Poj2054 color a tree && [HNOI/AHOI2018]排列
https://zybuluo.com/ysner/note/1120723 题面 原题 某省选强化题 大致意思是给你一颗树,选父亲后才能选儿子. 每个点对答案的贡献为你在第几次选这个点 × 该点权值 ...
- 64. Extjs中grid 的ColumnModel 属性配置
转自:https://blog.csdn.net/u011530389/article/details/45821945 本文导读:Ext.grid.ColumnModel 该类用于定义表格的列模型, ...
- Coursera Algorithms Programming Assignment 4: 8 Puzzle (100分)
题目原文:http://coursera.cs.princeton.edu/algs4/assignments/8puzzle.html 题目要求:设计一个程序解决8 puzzle问题以及该问题的推广 ...
- IBatis异常: Cannot find class: VARCHAR
今天再项目里添加新功能时,突然爆出 org.springframework.beans.factory.BeanCreationException: Error creating bean with ...
- 如何使js函数异步执行
CallbacksCallbacks使用场景在哪里?在很多时候需要控制一系列的函数顺序执行.那么一般就需要一个队列函数来处理这个问题: function Aaron(List, callback) { ...
- [App Store Connect帮助]二、 添加、编辑和删除用户(4)更改用户的 App 访问权限
您可以限制具有“App 管理”.“客户支持”.“开发者”.“营销”或“销售”职能的用户(均不具有“访问报告”职能)拥有哪些 App 的访问权限.如果您不更改他们的用户 App 访问权限,他们将默认拥有 ...
- BZOJ 2946 SA/SAM
思路: 1. 二分+后缀数组 2.SAM //By SiriusRen #include <cstdio> #include <cstring> #include <al ...
- springMVC是什么等七个问题
- 357 Count Numbers with Unique Digits 计算各个位数不同的数字个数
给定一个非负整数 n,计算各位数字都不同的数字 x 的个数,其中 0 ≤ x < 10n.示例:给定 n = 2,返回 91.(答案应该是除[11,22,33,44,55,66,77,88,99 ...