题目大意

给出m,n,对于每一个整数x∈[1,m],y∈[1,n]都有一点(x,y)。处理每个点所需要的能量为2*k+1,k为该点到原点经过的点的数量(不包括该点本身)。求处理所有点所需要的能量和。

思路

先考虑考虑暴力,即枚举每一个点,求其所需的能量。我们怎么知道一个点(x,y)的k值呢?

性质1:k=gcd(x,y)-1

既然是直线,所以我们可以想到斜率。我们规定斜率用两个互质的整数:分子和分母来表示。现在我们要求k。小学时我们是怎么化简分数的?分子分母分别除以它们的最大公因数即可。意思就是说,上述所说的分子是y/gcd(x,y),分母是x/gcd(x,y)。因为x=gcd(x, y) * (x / gcd(x, y)), y也是如此,所以对于每个整数a∈1~gcd(x,y),点(a*(x/gcd(x,y)), a*(y/gcd(x,y)))都是在原点与点(x,y)直线上的整点。抠掉当前点,因此,k=gcd(x,y)-1。

对于每个点都来一次gcd很慢,但是我们知道,一个约数i在1~n范围内是n/i个数的约数。gcd也是个约数,如果能利用到这一点,不就可以同时处理很多个点了吗?

现在我们的思路是:既然只要gcd(x,y)都相同,该点所需要的能量就相同,所以我们看看最大公约数等于i的数对(x,y)个数f[i]是多少,再让f[i]*(2*i-1)就是这个最大公因数对答案ans做出的贡献。

性质2:f[i]=公约数中含有i的个数-sum foreach j(i<j<=min(m,n)/i) (f[i*j])

容斥原理,如果i*j是某个数对的最大公因数,则i就不是它的最大公因数。把这样的点都抠掉,剩下的就都是关于最大公因数是i的了。

性质3:公约数含有i的个数=m/i*n/i

数对(x,y)的公约数中含有i当且仅当i既是x的约数又是y的约数。先选择约数中含有i的x,其有m/i个。这时再选择y,其有n/i个。根据乘法原理,因为是依次选择,所以两个式子相乘。

  1. #include <cstdio>
  2. #include <cstring>
  3. #include <algorithm>
  4. using namespace std;
  5.  
  6. #define ll long long
  7. const int MAX_N = 1000010;
  8.  
  9. int main()
  10. {
  11. ll n, m, ans = 0;
  12. static ll f[MAX_N];
  13. scanf("%lld%lld", &n, &m);
  14. if (n > m)
  15. swap(n, m);
  16. memset(f, 0, sizeof(f));
  17. for (ll i = n; i >= 1; i--)
  18. {
  19. f[i] = (n / i)*(m / i);
  20. for (ll j = 2; j <= n / i; j++)
  21. f[i] -= f[i*j];
  22. ans += f[i] * (i * 2 - 1);
  23. }
  24. printf("%lld\n", ans);
  25. return 0;
  26. }

  

luogu1447 能量采集的更多相关文章

  1. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  2. [luogu1447 NOI2010] 能量采集 (容斥原理)

    传送门 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的 ...

  3. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  4. noi2010 能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 3068  Solved: 1820 [Submit][Sta ...

  5. 2005: [Noi2010]能量采集 - BZOJ

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  6. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  7. 【BZOJ 2005】[Noi2010]能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  8. 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)

    能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...

  9. BZOJ 2005 能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

随机推荐

  1. sql 添加列并设置默认值

    ALTER TABLE tablsename ADD fieldname BIT NULL DEFAULT

  2. Visual Studio切换界面显示语言

    [工具]-[选项]-[环境]-[区域设置]-[语言]-[获取其他语言] 安装后重启即可.

  3. Windows7环境下Composer 安装包的Cache目录位置

    http://segmentfault.com/a/1190000000355928 https://getcomposer.org/doc/ 要说Composer的用法,以后再说,现在只记录wind ...

  4. 三星A3、A5、A7、G7、J5、J7、S6系列等新机型的部分手机解锁 ROOT刷机

    三星A3.A5.A7.G7.J5.J7.S6系列等新机型的部分手机,三星官方加了限制,需要解锁后才能刷机如果没有解锁,刷第三方recovery或者刷非官方原版固件,都会刷不进,手机跳转到提示界面,显示 ...

  5. 复习java第五天(枚举、Annotation(注释) 概述)

    一.枚举 传统的方式: •在某些情况下,一个类的对象是有限而且固定的.例如季节类,只能有 4 个对象 •手动实现枚举类: —private 修饰构造器. —属性使用 private final 修饰. ...

  6. Java_Web之神奇的Ajax

    为什么使用Ajax? 无刷新:不刷新整个页面,只刷新局部 无刷新的好处 提供类似C/S的交互效果,操作更方面 只更新部分页面,有效利用带宽   什么是Ajax?   XMLHttpRequest常用方 ...

  7. Hadoop多节点Cluster

    Hadoop多节点集群规划 服务起名称 内网IP HDFS YARN master 192.168.1.155 NameNode ResourceManager slave1 192.168.1.11 ...

  8. VTK嵌入MFC同步显示

    使用VTK嵌入MFC,实现四视图更新,机制和细节参考原文. 原文链接:http://blog.csdn.net/www_doling_net/article/details/8939115 原文代码: ...

  9. ANN:ML方法与概率图模型

    一.ML方法分类:          产生式模型和判别式模型 假定输入x,类别标签y         -  产生式模型(生成模型)估计联合概率P(x,y),因可以根据联合概率来生成样本:HMMs   ...

  10. https ssl 总结

    主要工作: 1)算法协商: 2)密钥交换: 3)身份认证: 4)数据通信: 1.2.3主要使用握手协议: 4使用记录协议. SSL协议可分为两层:记录协议.握手协议 SSL Record Protoc ...