洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
感觉自己学的一直是假的矩阵快速幂。。。
辅助矩阵为
$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$
#include<cstdio>
#include<cstring>
#define int long long
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++)
using namespace std;
const int MAXN=;
const int mod=1e9+;
char buf[<<],*p1=buf,*p2=buf;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,k;
struct Matrix
{
int m[MAXN][MAXN];
Matrix operator * (const Matrix a)const
{
Matrix ans={};
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
ans.m[i][j]=(ans.m[i][j]+(m[i][k]*a.m[k][j])%mod)%mod;
return ans;
}
Matrix pow(int p)
{
Matrix ans,a=(*this);
for(int i=;i<=n;i++) ans.m[i][i]=;
while(p)
{
if(p&) ans=ans*a;
a=a*a;
// a.print();
p>>=;
}
return ans;
}
void print()
{
for(int i=;i<=n;i++,puts(""))
for(int j=;j<=n;j++)
printf("%d ",m[i][j]);
printf("*******************\n");
}
};
main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
k=read();n=;
Matrix temp,ans;
temp.m[][]=;temp.m[][]=;
temp.m[][]=;temp.m[][]=;
ans.m[][]=;ans.m[][]=;
ans.m[][]=;ans.m[][]=;
temp=temp.pow(k);
ans=ans*temp;
printf("%d",ans.m[][]);
return ;
}
洛谷P1962 斐波那契数列(矩阵快速幂)的更多相关文章
- 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质
P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
随机推荐
- Winform开发 如何为dataGridView 添加CheckBox列,并获取选中行
//添加CheckBox列 DataGridViewCheckBoxColumn columncb = new DataGridViewCheckBoxColumn(); columncb.Heade ...
- sphinx with discuz
安装sphinx: sudo apt-get install sphinxsearch 配置: source discuz { type = mysql sql_host = xx.xx.xx.xx ...
- (转载) IaaS, PaaS, Saas
如果你是一个网站站长,想要建立一个网站.不采用云服务,你所需要的投入大概是:买服务器,安装服务器软件,编写网站程序. 现在你追随潮流,采用流行的云计算,如果你采用 IaaS 服务,那么意味着你就不用自 ...
- 2017/01/20 学习笔记 关于修改和重打jar包
背景 客户提供了jar包,但发现db表中缺少一个字段,db追加以后需要修改jar包中的source. 操作 如何修改jar包中的source并重新打一个新的jar包,做了如下操作. ① 开包 解压j ...
- 关于《Python核心编程》第2版和第3版
关于<Python核心编程>第2版和第3版 以前开始学Python的时候,根据某大神的建议买了本<Python核心编程>第2版,慢慢学习.而最近回家没带书回来,刚好JD有活动, ...
- RabbitMQ学习之ConntectionFactory与Conntection的认知
在发送和接收消息重要的类有:ConnectionFactory, Connection,Channel和 QueueingConsumer. ConntectionFactory类是方便创建与AMQP ...
- anuglar.js ui-router传递参数
anuglar.js ui-router 传递参数的方法有: 一: ui-sref 传递参数,传递一个参数的时候 首先路有这样写: .state('edit', { //线路编辑页面 url: '/e ...
- Java范式1
package Xwxx; public class Person { private String name; private int age; public Person() { } public ...
- LSTM比较RNN
LSTM只能避免RNN的梯度消失(gradient vanishing),但是不能对抗梯度爆炸问题(Exploding Gradient). 梯度膨胀(gradient explosion)不是个严重 ...
- (3)Spring Boot热部署【从零开始学Spring Boot】
在编写代码的时候,你会发现我们只是简单把打印信息改变了下,就需要重新部署,如果是这样的编码方式,那么我们估计一天下来之后就真的是打几个Hello World之后就下班了.那么如何解决热部署的问题呢?那 ...