洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
感觉自己学的一直是假的矩阵快速幂。。。
辅助矩阵为
$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$
#include<cstdio>
#include<cstring>
#define int long long
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++)
using namespace std;
const int MAXN=;
const int mod=1e9+;
char buf[<<],*p1=buf,*p2=buf;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,k;
struct Matrix
{
int m[MAXN][MAXN];
Matrix operator * (const Matrix a)const
{
Matrix ans={};
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
ans.m[i][j]=(ans.m[i][j]+(m[i][k]*a.m[k][j])%mod)%mod;
return ans;
}
Matrix pow(int p)
{
Matrix ans,a=(*this);
for(int i=;i<=n;i++) ans.m[i][i]=;
while(p)
{
if(p&) ans=ans*a;
a=a*a;
// a.print();
p>>=;
}
return ans;
}
void print()
{
for(int i=;i<=n;i++,puts(""))
for(int j=;j<=n;j++)
printf("%d ",m[i][j]);
printf("*******************\n");
}
};
main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
k=read();n=;
Matrix temp,ans;
temp.m[][]=;temp.m[][]=;
temp.m[][]=;temp.m[][]=;
ans.m[][]=;ans.m[][]=;
ans.m[][]=;ans.m[][]=;
temp=temp.pow(k);
ans=ans*temp;
printf("%d",ans.m[][]);
return ;
}
洛谷P1962 斐波那契数列(矩阵快速幂)的更多相关文章
- 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质
P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
随机推荐
- RGB_D_开发征程(使用Kinect)
学习历程依此为纲! Kinect学习资料: kinect和openNI开发资料汇总:http://blog.csdn.net/chenli2010/article/details/6887646 原始 ...
- 【技术累积】【点】【java】【9】Optional
基础概念 java8引入的,java9有加强 Google公司出品 旨在更好的处理NullPointException 创建Optional实例和基础使用 Optional op1 = Optiona ...
- 使用dom4j生成word的方法
http://blog.csdn.net/zhyh1986/article/details/8727523#t6 http://blog.csdn.net/zuozuofuwaiwai/article ...
- distpicker 省市县级联
一.前言:想着每次写项目都要遇到省市县级联,就想找一个比较简单好用的插件来...感觉挺不错~~~ 二.例子: html : 效果: 还有很多种用法,我这里只放一种,插件文件里index.html有介绍 ...
- &:first-of-type含义
span { &:first-of-type { margin-right: 16px; } } &符号是scss和less里的语法,代表上一级选择器,实际编译成css就是 span: ...
- 有关详细信息, 请使用 -Xlint:unchecked 重新编译。
这是在复制代码的时候,没有修改路径,但是IDEA没有报错,还会爆出 WARN ework.web.servlet.PageNotFound - No mapping found for HTTP re ...
- Centos 搭建activemq
Centos 搭建activemq 1,官方下载 http://activemq.apache.org/activemq-5122-release.html apache-activemq-5.15 ...
- 洛谷P1055 ISBN号码
题目描述 每一本正式出版的图书都有一个ISBN号码与之对应,ISBN码包括 999 位数字. 111 位识别码和 333 位分隔符,其规定格式如x-xxx-xxxxx-x,其中符号-就是分隔符(键盘上 ...
- SSM整合(spring,spirngmvc,mybatis)
整合思路 准备环境:导入jar包(spring mybatis dbcp连接池 mysql驱动包 log4j) 工程结构: --------------------------- 1. 整合 ...
- [asp.net]ashx中session存入,aspx为null的原因(使用flash uploader)
I am using uploadify to upload files, they automatically post to the handler. I then modify the sess ...