Edit Distance

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character

b) Delete a character

c) Replace a character

别人的思路:

自然语言处理(NLP)中。有一个基本问题就是求两个字符串的minimal Edit Distance, 也称Levenshtein distance。受到一篇Edit Distance介绍文章的启示。本文用动态规划求取了两个字符串之间的minimal Edit Distance. 动态规划方程将在下文进行解说。

1. what is minimal edit distance?

简单地说。就是仅通过插入(insert)、删除(delete)和替换(substitute)个操作将一个字符串s1变换到还有一个字符串s2的最少步骤数。熟悉算法的同学非常easy知道这是个动态规划问题。
事实上一个替换操作能够相当于一个delete+一个insert,所以我们将权值定义例如以下:
I (insert):1
D (delete):1
S (substitute):2 2. example:
intention->execution
Minimal edit distance:
delete i ; n->e ; t->x ; insert c ; n->u 求和得cost=8 3.calculate minimal edit distance dynamically
思路见凝视,这里D[i,j]就是取s1前i个character和s2前j个character所得minimal edit distance
三个操作动态进行更新:
D(i,j)=min { D(i-1, j) +1, D(i, j-1) +1 , D(i-1, j-1) + s1[i]==s2[j] ? 0 : 2}。中的三项分别相应D,I,S。(详见我同学的博客)

由于本题的替换操作权重相同为1。故字符不相等+1就可以。

代码例如以下:

public class Solution {
public int minDistance(String word1, String word2) {
//边界条件
if(word1.length() == 0)
return word2.length();
if(word2.length() == 0)
return word1.length();
/*
* 本题用动态规划的解法
* f[i][j]表示word1的前i个单词到word2前j个单词的最短距离
* 状态转移方程:f[i][j] =
*/ int[][] f = new int[word1.length()][word2.length()];
boolean isEquals = false;//是否已经有相等
for(int i = 0 ; i < word2.length(); i++){
//假设相等,则距离不添加
if(word1.charAt(0) == word2.charAt(i) && !isEquals){
f[0][i] = i > 0 ? f[0][i-1]:0;//不能从0開始
isEquals = true;
}else{
f[0][i] = i > 0 ? f[0][i-1]+1:1;
}
}
isEquals = false;//是否已经有相等
for(int i = 1 ; i < word1.length(); i++){
//假设相等,则距离不添加
if(word1.charAt(i) == word2.charAt(0) && !isEquals){
f[i][0] = f[i-1][0];//不能从0開始
isEquals = true;
}else{
f[i][0] = f[i-1][0]+1;
}
} for(int i = 1; i < word1.length();i++){
for(int j = 1; j < word2.length(); j++){
if(word1.charAt(i) == word2.charAt(j)){
f[i][j] = f[i-1][j-1];//相等的话直接相等
}else{
f[i][j] = f[i-1][j-1]+1;
}
//然后与从f[i-1][j]+1。f[i][j-1]+1比較,取最小值
f[i][j] = Math.min(f[i][j],Math.min(f[i-1][j]+1,f[i][j-1]+1));
}
}
return f[word1.length()-1][word2.length()-1];
}
}

leetCode 72.Edit Distance (编辑距离) 解题思路和方法的更多相关文章

  1. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  2. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  3. 【LeetCode】72. Edit Distance 编辑距离(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...

  4. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  5. [leetcode]72. Edit Distance 最少编辑步数

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...

  6. 72. Edit Distance(编辑距离 动态规划)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  7. 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP

    Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...

  8. [leetcode] 72. Edit Distance (hard)

    原题 dp 利用二维数组dp[i][j]存储状态: 从字符串A的0~i位子字符串 到 字符串B的0~j位子字符串,最少需要几步.(每一次删增改都算1步) 所以可得边界状态dp[i][0]=i,dp[0 ...

  9. leetCode 48.Rotate Image (旋转图像) 解题思路和方法

    Rotate Image You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees ...

随机推荐

  1. .NET 图片解密为BASE64

    #region 图片加密 /// <summary> /// 加密本地文件 /// </summary> /// <param name="inputname& ...

  2. Cocos2d-x3.0 RenderTexture(三)

    .h #include "cocos2d.h" #include "cocos-ext.h" #include "ui/CocosGUI.h" ...

  3. display:block jquery.sort()

    对所有的块元素都没有意义,块元素的dispaly属性默认值为block,没必要再显式定义——除非你之前对块元素的display属性重新定义过.===========================多罗 ...

  4. C# Keywords - is

    记录一下在日常开发过程中遇到的一些C# 基础编程的知识!希望以后能用的着.知识是在平常的开发过程中去学到的.只有用到了,你才能深入的理解它,并用好它. 本资料来源于:MSND下面是一些相关的code ...

  5. HTML5-1、标签

    本文只是自己学习HTML5时的一些笔记.希望自己能够学好HTML5. 如果有感兴趣的同学.可以互相学习. 我觉得HTML5在未来的开发中站主导地位. 下面开始学习HTML5. 还是从HTML5标签开始 ...

  6. Docker容器查看ip地址

    第一步:进入centos7容器:yum install net-tools -y     我这里已经加载过,所以没有继续加载 第二步:加载完成之后可以输入 ifconfig查看ip地址

  7. BZOJ 4241 分块

    思路: 考虑分块 f[i][j]表示从第i块开头到j的最大值 cnt[i][j]表示从第i块开始到序列末尾j出现了多少次 边角余料处理一下就好啦~ //By SiriusRen #include &l ...

  8. POJ 2771 最大独立集 匈牙利算法

    (为什么最大独立集的背景都是严打搞对象的( _ _)ノ|壁) 思路:匈牙利算法 没什么可说的-- // by SiriusRen #include <cstdio> #include &l ...

  9. vue中使用UEditor编辑器 -- 2

    1:下载ueditor下来,放在vue项目中的static文件夹下   2:创建ueditor编辑界面 3:椰~~~~~此时已经可以使用了 但是你会发现   (黑人脸)what the fuck??? ...

  10. Apache2.2伪静态配置

    最近由于工作的需要要配置一下Apache的伪静态化,在网上搜了好多都无法完成,所以觉得有必要在这里写一下. 第一步:打开Apache的httpd.conf文件,把LoadModule rewrite_ ...