1789 最大获利

2006年NOI全国竞赛

 时间限制: 2 s
 空间限制: 128000 KB
 题目等级 : 大师 Master
 
 
 
题目描述 Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是 挑战。THU 集团旗下的 CS&T 通讯公司在新一代通讯技术血战的前夜,需要做 太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最 优化等项目。 在前期市场调查和站址勘测之后,公司得到了一共 N 个可以作为通讯信号中 转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需 要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第 i 个通讯中转站需要的成本为 Pi(1≤i≤N)。 另外公司调查得出了所有期望中的用户群,一共 M 个。关于第 i 个用户群的 信息概括为 Ai, Bi和 Ci:这些用户会使用中转站 Ai和中转站 Bi进行通讯,公司 可以获益 Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU 集团的 CS&T 公司可以有选择的建立一些中转站(投入成本),为一些 用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让 公司的净获利最大呢?(净获利 = 获益之和 – 投入成本之和)

输入描述 Input Description

输入文件中第一行有两个正整数 N 和 M 。 第二行中有 N 个整数描述每一个通讯中转站的建立成本,依次为 P1, P2, …, PN 。 以下 M 行,第(i + 2)行的三个数 Ai, Bi和 Ci描述第 i 个用户群的信息。 所有变量的含义可以参见题目描述。

输出描述 Output Description

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

样例输入 Sample Input

5 5

1 2 3 4 5

1 2 3

2 3 4

1 3 3

1 4 2

4 5 3

样例输出 Sample Output

4

数据范围及提示 Data Size & Hint

选择建立 1、2、3 号中转站,则需要投入成本 6,获利为 10,因此得到最大 收益 4。

80%的数据中:N≤200,M≤1 000。

100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

解题:最大权闭合子图

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct arc{
int to,flow,next;
arc(int x = ,int y = ,int z = -){
to = x;
flow = y;
next = z;
}
};
arc e[];
int head[maxn],d[maxn],cur[maxn];
int tot,S,T,n,m;
void add(int u,int v,int flow){
e[tot] = arc(v,flow,head[u]);
head[u] = tot++;
e[tot] = arc(u,,head[v]);
head[v] = tot++;
}
bool bfs(){
memset(d,-,sizeof(d));
d[S] = ;
queue<int>q;
q.push(S);
while(!q.empty()){
int u = q.front();
q.pop();
for(int i = head[u]; ~i; i = e[i].next){
if(e[i].flow && d[e[i].to] == -){
d[e[i].to] = d[u] + ;
q.push(e[i].to);
}
}
}
return d[T] > -;
}
int dfs(int u,int low){
if(u == T) return low;
int tmp = ,a;
for(int &i = cur[u]; ~i; i = e[i].next){
if(e[i].flow && d[e[i].to] == d[u] + &&(a=dfs(e[i].to,min(low,e[i].flow)))){
e[i].flow -= a;
e[i^].flow += a;
tmp += a;
low -= a;
if(!low) break;
}
}
if(!tmp) d[u] = -;
return tmp;
}
int dinic(){
int ans = ;
while(bfs()){
memcpy(cur,head,sizeof(head));
ans += dfs(S,INF);
}
return ans;
}
int main() {
int u,v,w;
while(~scanf("%d %d",&n,&m)){
memset(head,-,sizeof(head));
S = tot = ;
T = n + m + ;
int ans = ;
for(int i = ; i <= n; ++i){
scanf("%d",&w);
add(i,T,w);
}
for(int i = ; i < m; ++i){
scanf("%d %d %d",&u,&v,&w);
add(n+i+,u,INF);
add(n+i+,v,INF);
add(S,n+i+,w);
ans += w;
}
printf("%d\n",ans - dinic());
}
return ;
}

CodeVS 1789 最大获利的更多相关文章

  1. NOI2006 最大获利(最大权闭合子图)

    codevs 1789 最大获利 2006年NOI全国竞赛  时间限制: 2 s  空间限制: 128000 KB   题目描述 Description 新的技术正冲击着手机通讯市场,对于各大运营商来 ...

  2. C++之路进阶——codevs1789(最大获利)

    1789 最大获利 2006年NOI全国竞赛  时间限制: 2 s  空间限制: 128000 KB  题目等级 : 大师 Master       题目描述 Description 新的技术正冲击着 ...

  3. codevs 3289 花匠

    题目:codevs 3289 花匠 链接:http://codevs.cn/problem/3289/ 这道题有点像最长上升序列,但这里不是上升,是最长"波浪"子序列.用动态规划可 ...

  4. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  5. codevs 1285 二叉查找树STL基本用法

    C++STL库的set就是一个二叉查找树,并且支持结构体. 在写结构体式的二叉查找树时,需要在结构体里面定义操作符 < ,因为需要比较. set经常会用到迭代器,这里说明一下迭代器:可以类似的把 ...

  6. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  7. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  8. codevs 1228 苹果树 树链剖分讲解

    题目:codevs 1228 苹果树 链接:http://codevs.cn/problem/1228/ 看了这么多树链剖分的解释,几个小时后总算把树链剖分弄懂了. 树链剖分的功能:快速修改,查询树上 ...

  9. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

随机推荐

  1. Java web课程学习之会话(Session)

    Session会话   l web应用中的会话是指一个客户端浏览器与web服务器之间连续发生一系列请求和响应过程 l web应用的会话状态是指web服务器与浏览器在会话过程中产生的状态信息,借助会话状 ...

  2. HDU 2095 find your present (2)( 位运算 )

    链接:传送门 题意:给出n个数,这n个数中只有一种数出现奇数次,其他全部出现偶数次,让你找到奇数次这个数 思路:简单异或运算题 /*********************************** ...

  3. linux查看前几条命令记录

    1.按上下箭头键2.history|more分页显示3.vi /etc/profile找HISTSIZE=1000,说明你最多能存1000条历史记录.4.!!执行最近执行的命令5.history|he ...

  4. 通过CSS样式隐藏百度版权标志

    在JSP中添加: //隐藏所有.anchorBL{ display:none; } //隐藏下方的保留百度地图图片 .BMap_cpyCtrl{ display:none; }   注:维护他人版权, ...

  5. 移动端ios兼容问题

    IOS系统bug: 1)input无法输入的问题: -webkit-user-select:none;改成-webkit-user-select:auto: 2)滚动不流畅(overflow-y:au ...

  6. Myeclipse学习总结(9)——MyEclipse2014安装插件的几种方式(适用于Eclipse或MyEclipse其他版本)

    众所周知MyEclipse是一个很强大的Java IDE,而且它有许多开源免费又好用的插件,这些插件给我们开发过程中带来了许多方便.插件具有针对性,例如,你如果做安卓开发,可能需要一个ADT(Andr ...

  7. shell 键盘录入和运算

    一.read 命令,从键盘读入数据,赋给变量 1.脚本代码 #!/bin/sh read arg1 arg2 echo "第一个参数: $arg1" echo "第二个参 ...

  8. POJ 3904

    第一道莫比乌斯反演的题. 建议参看http://www.isnowfy.com/mobius-inversion/ 摘其中部分 证明的话感觉写起来会比较诡异,大家意会吧说一下这个经典题目:令R(M,N ...

  9. 《iOS Human Interface Guidelines》——System Button

    系统button 系统button运行一个app特定的动作. API NOTE 在iOS 7中,UIButtonTypeRoundedRect被又一次定义成UIButtonTypeSystem.查看U ...

  10. npm API文档

    npm API文档 https://docs.npmjs.com/