这道题。。。好像是第一道我自己切出来的黑题。。。

先说一句,牛顿二项式蒟蒻并不会,可以说是直接套结论。

求诸位老爷轻喷。


这道题用卡特兰数搞。

卡特兰数这玩意从普及组初赛一路考到省选,十分有用。

如果不清楚这个概念的话可以看一下这里

卡特兰数是有两种计算方法:

1) 用递推算。

2) 用排列组合。

用它解题的流程一般是先说明所求的问题可以归到第一类中,然后再用第二类来计算具体的值。

这道题就可以用卡特兰数水过。


我们假设\(f_i\)表示节点数为i的二叉树有多少种。

那么可以发现存在这样的关系:\(f_i=\sum_{k=1}^{i-1}f_{k}f_{i-k-1}\)。

这个东西满足卡特兰数的第一类表示方法。

所以运用第二类表示方法就可以得到\(f_i=\frac{1}{n+1}C^n_{2n}\)。

现在我们用\(h_i\)表示节点数为i的二叉树的叶子节点数量。

那根据\(f_i\)的值我们就可以得出递推式:\(h_i=2\sum_{k=0}^{i-1}h_kf_{i-k-1}\)

也就是\(h_i=C^{i-1}_{2i-2}\)

那么最终的答案就是\(\frac{h_i}{f_i}=\frac{C^{i-1}_{2i-2}}{\frac{1}{n+1}C^n_{2n}}=\frac{n(n+1)}{2(2n-1)}\)。

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define qwq int
#define QAQ double
#define re register
using namespace std;
namespace Solve{
inline void read(qwq &x){
x=0;qwq f=1;char c=getchar();
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=x*10+c-'0';
x*=f;
}
qwq n;
QAQ ans;
inline void solve(){
read(n);
ans=(QAQ)n*(QAQ)(n+1)/(QAQ)(2*n-1)/2;
printf("%.9lf",ans);
}
}
using namespace Solve;
qwq main(){
solve();
}

题解 P3978 【[TJOI2015]概率论】的更多相关文章

  1. P3978 [TJOI2015]概率论

    \(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...

  2. [洛谷P3978][TJOI2015]概率论

    题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少? 题解:令$f_n ...

  3. 并不对劲的bzoj4001:loj2105:p3978:[TJOI2015]概率论

    题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉 ...

  4. luogu P3978 [TJOI2015]概率论

    看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k ...

  5. 4001: [TJOI2015]概率论

    4001: [TJOI2015]概率论 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 262  Solved: 108[Submit][Status] ...

  6. 【BZOJ4001】[TJOI2015]概率论(生成函数)

    [BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...

  7. bzoj4001: [TJOI2015]概率论

    题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...

  8. [TJOI2015]概率论

    [TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...

  9. 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论

    题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...

随机推荐

  1. docker 命令部分

    本文只记录docker命令在大部分情境下的使用,如果想了解每一个选项的细节,请参考官方文档,这里只作为自己以后的备忘记录下来. 根据自己的理解,总的来说分为以下几种: 看一个变迁图   看一个变迁图 ...

  2. Zepto.js实现fadeIn,fadeOut功能

    Zepto是一个轻量级的针对现代高级浏览器的JavaScript库, 它与jquery有着类似的api. 如果你会用jquery,那么你也会用zepto. Zepto的设计目的是提供 jQuery 的 ...

  3. 【Manthan, Codefest 18 (rated, Div. 1 + Div. 2) B】Reach Median

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 将数组排序一下. 考虑中位数a[mid] 如果a[mid]==s直接输出0 如果a[mid]<s,那么我们把a[mid]改成s ...

  4. mybatis入门截图四(订单商品数据模型 一对一,一对多,多对多)

    --------------------------------- 一对一查询 查询订单信息,关联查询创建订单的用户信息 1.高级映射-一对一查询-使用resultType 2.高级映射-一对一查询- ...

  5. soapui测试接口使用步骤

    1.新建项目 2. 定义接口 url输入接口 3.新建测试集 选择项目,右键 4.在测试集下新建测试用例 5.在测试步骤中导入要测试的请求 6.run

  6. CF786A - Berzerk

    /* CF786A - Berzerk http://codeforces.com/contest/786/problem/A 博弈论 直接搜出NP状态图.记得要记忆化剪枝. * */ #includ ...

  7. 敏捷开发-srcum

    SCRUM框架包括3个角色.3个工件.5个活动.5个价值 3个角色 1.产品负责人(Product Owner) 2.Scrum Master 3.Scrum团队 3个工具 1.Product Bac ...

  8. static final常量变量的正确书写规范

    AccountConstants.java类 命名:常量类以Constants单词命名结尾 package com.paic.pacz.core.salesmanage.util; import ja ...

  9. 分布式公布订阅消息系统 Kafka 架构设计

    我们为什么要搭建该系统 Kafka是一个消息系统,原本开发自LinkedIn,用作LinkedIn的活动流(activity stream)和运营数据处理管道(pipeline)的基础. 如今它已为多 ...

  10. CentOS 6 安装最新的 Redis 2.8 ,安装 TCMalloc

    1,遇到的问题就是 redis 2.8 版本号依赖 Google 的 TCMalloc TCMalloc(Thread-Caching Malloc)是google开发的开源工具──"goo ...