<!DOCTYPE HTML>
<html lang="en">
<head>
<title>Listing 7-3 and 7-4, Texturing and Lighting With the Phong Reflection Model.</title>
<script src="./lib/webgl-debug.js"></script>
<script src="./lib/glMatrix.js"></script>
<script src="./lib/webgl-utils.js"></script> <meta charset="utf-8">
<script id="shader-vs" type="x-shader/x-vertex">
// Vertex shader implemented to perform lighting according to the
// Phong reflection model. Forwards texture coordinates to fragment
// shader.
attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;
attribute vec2 aTextureCoordinates; uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform mat3 uNMatrix; uniform vec3 uLightPosition;
uniform vec3 uAmbientLightColor;
uniform vec3 uDiffuseLightColor;
uniform vec3 uSpecularLightColor; varying vec2 vTextureCoordinates;
varying vec3 vLightWeighting; const float shininess = 32.0; void main() {
// Get the vertex position in eye coordinates
vec4 vertexPositionEye4 = uMVMatrix * vec4(aVertexPosition, 1.0);
vec3 vertexPositionEye3 = vertexPositionEye4.xyz / vertexPositionEye4.w; // Calculate the vector (l) to the light source
vec3 vectorToLightSource = normalize(uLightPosition - vertexPositionEye3); // Transform the normal (n) to eye coordinates
vec3 normalEye = normalize(uNMatrix * aVertexNormal); // Calculate n dot l for diffuse lighting
float diffuseLightWeightning = max(dot(normalEye,
vectorToLightSource), 0.0); // Calculate the reflection vector (r) that is needed for specular light
vec3 reflectionVector = normalize(reflect(-vectorToLightSource,
normalEye)); // The camera in eye coordinates is located in the origin and is pointing
// along the negative z-axis. Calculate viewVector (v) in eye coordinates as:
// (0.0, 0.0, 0.0) - vertexPositionEye3
vec3 viewVectorEye = -normalize(vertexPositionEye3); float rdotv = max(dot(reflectionVector, viewVectorEye), 0.0); float specularLightWeightning = pow(rdotv, shininess); // Sum up all three reflection components and send to the fragment shader
vLightWeighting = uAmbientLightColor +
uDiffuseLightColor * diffuseLightWeightning +
uSpecularLightColor * specularLightWeightning; // Finally transform the geometry
gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vTextureCoordinates = aTextureCoordinates;
}
</script> <!--片元着色器-->
<script id="shader-fs" type="x-shader/x-fragment">
precision mediump float; varying vec2 vTextureCoordinates;
varying vec3 vLightWeighting;
uniform sampler2D uSampler; void main() {
vec4 texelColor = texture2D(uSampler, vTextureCoordinates); //结合了纹理和光照的片段着色器(vLightWeighting包含已经计算得到的环境光和漫反射光)
gl_FragColor = vec4(vLightWeighting.rgb * texelColor.rgb, texelColor.a);
}
</script> <script type="text/javascript">
// globals
var gl;
var pwgl = {};
// Keep track of ongoing image loads to be able to handle lost context
pwgl.ongoingImageLoads = [];
var canvas; function createGLContext(canvas) {
var names = ["webgl", "experimental-webgl"];
var context = null;
for (var i=0; i < names.length; i++) {
try {
context = canvas.getContext(names[i]);
} catch(e) {}
if (context) {
break;
}
}
if (context) {
context.viewportWidth = canvas.width;
context.viewportHeight = canvas.height;
} else {
alert("Failed to create WebGL context!");
}
return context;
} function loadShaderFromDOM(id) {
var shaderScript = document.getElementById(id); // If we don't find an element with the specified id
// we do an early exit
if (!shaderScript) {
return null;
} // Loop through the children for the found DOM element and
// build up the shader source code as a string
var shaderSource = "";
var currentChild = shaderScript.firstChild;
while (currentChild) {
if (currentChild.nodeType == 3) { // 3 corresponds to TEXT_NODE
shaderSource += currentChild.textContent;
}
currentChild = currentChild.nextSibling;
} var shader;
if (shaderScript.type == "x-shader/x-fragment") {
shader = gl.createShader(gl.FRAGMENT_SHADER);
} else if (shaderScript.type == "x-shader/x-vertex") {
shader = gl.createShader(gl.VERTEX_SHADER);
} else {
return null;
} gl.shaderSource(shader, shaderSource);
gl.compileShader(shader); if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS) &&
!gl.isContextLost()) {
alert(gl.getShaderInfoLog(shader));
return null;
}
return shader;
} function setupShaders() {
var vertexShader = loadShaderFromDOM("shader-vs");
var fragmentShader = loadShaderFromDOM("shader-fs"); var shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram); if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS) &&
!gl.isContextLost()) {
alert("Failed to link shaders: " + gl.getProgramInfoLog(shaderProgram));
} gl.useProgram(shaderProgram);
pwgl.vertexPositionAttributeLoc =
gl.getAttribLocation(shaderProgram, "aVertexPosition"); pwgl.vertexNormalAttributeLoc =
gl.getAttribLocation(shaderProgram, "aVertexNormal"); pwgl.vertexTextureAttributeLoc =
gl.getAttribLocation(shaderProgram, "aTextureCoordinates"); pwgl.uniformMVMatrixLoc =
gl.getUniformLocation(shaderProgram, "uMVMatrix"); pwgl.uniformProjMatrixLoc =
gl.getUniformLocation(shaderProgram, "uPMatrix"); pwgl.uniformNormalMatrixLoc =
gl.getUniformLocation(shaderProgram, "uNMatrix"); pwgl.uniformSamplerLoc =
gl.getUniformLocation(shaderProgram, "uSampler"); pwgl.uniformLightPositionLoc =
gl.getUniformLocation(shaderProgram, "uLightPosition"); pwgl.uniformAmbientLightColorLoc =
gl.getUniformLocation(shaderProgram, "uAmbientLightColor"); pwgl.uniformDiffuseLightColorLoc =
gl.getUniformLocation(shaderProgram, "uDiffuseLightColor"); pwgl.uniformSpecularLightColorLoc =
gl.getUniformLocation(shaderProgram, "uSpecularLightColor"); gl.enableVertexAttribArray(pwgl.vertexPositionAttributeLoc);
gl.enableVertexAttribArray(pwgl.vertexNormalAttributeLoc);
gl.enableVertexAttribArray(pwgl.vertexTextureAttributeLoc); pwgl.modelViewMatrix = mat4.create();
pwgl.projectionMatrix = mat4.create();
pwgl.modelViewMatrixStack = [];
} function pushModelViewMatrix() {
var copyToPush = mat4.create(pwgl.modelViewMatrix);
pwgl.modelViewMatrixStack.push(copyToPush);
} function popModelViewMatrix() {
if (pwgl.modelViewMatrixStack.length == 0) {
throw "Error popModelViewMatrix() - Stack was empty ";
}
pwgl.modelViewMatrix = pwgl.modelViewMatrixStack.pop();
} function setupFloorBuffers() {
pwgl.floorVertexPositionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexPositionBuffer); var floorVertexPosition = [
// Plane in y=0
5.0, 0.0, 5.0, //v0
5.0, 0.0, -5.0, //v1
-5.0, 0.0, -5.0, //v2
-5.0, 0.0, 5.0]; //v3 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(floorVertexPosition),
gl.STATIC_DRAW); pwgl.FLOOR_VERTEX_POS_BUF_ITEM_SIZE = 3;
pwgl.FLOOR_VERTEX_POS_BUF_NUM_ITEMS = 4; //指定地板的法向量的方向
// Specify normals to be able to do lighting calculations
pwgl.floorVertexNormalBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexNormalBuffer); var floorVertexNormals = [
0.0, 1.0, 0.0, //v0
0.0, 1.0, 0.0, //v1
0.0, 1.0, 0.0, //v2
0.0, 1.0, 0.0]; //v3 gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(floorVertexNormals),
gl.STATIC_DRAW); pwgl.FLOOR_VERTEX_NORMAL_BUF_ITEM_SIZE = 3;
pwgl.FLOOR_VERTEX_NORMAL_BUF_NUM_ITEMS = 4; // Setup texture coordinates buffer
pwgl.floorVertexTextureCoordinateBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexTextureCoordinateBuffer);
var floorVertexTextureCoordinates = [
2.0, 0.0,
2.0, 2.0,
0.0, 2.0,
0.0, 0.0
]; gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(floorVertexTextureCoordinates),
gl.STATIC_DRAW); pwgl.FLOOR_VERTEX_TEX_COORD_BUF_ITEM_SIZE = 2;
pwgl.FLOOR_VERTEX_TEX_COORD_BUF_NUM_ITEMS = 4; // Setup index buffer
pwgl.floorVertexIndexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, pwgl.floorVertexIndexBuffer);
var floorVertexIndices = [0, 1, 2, 3]; gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(floorVertexIndices),
gl.STATIC_DRAW); pwgl.FLOOR_VERTEX_INDEX_BUF_ITEM_SIZE = 1;
pwgl.FLOOR_VERTEX_INDEX_BUF_NUM_ITEMS = 4;
} function setupCubeBuffers() {
pwgl.cubeVertexPositionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexPositionBuffer); var cubeVertexPosition = [
// Front face
1.0, 1.0, 1.0, //v0
-1.0, 1.0, 1.0, //v1
-1.0, -1.0, 1.0, //v2
1.0, -1.0, 1.0, //v3 // Back face
1.0, 1.0, -1.0, //v4
-1.0, 1.0, -1.0, //v5
-1.0, -1.0, -1.0, //v6
1.0, -1.0, -1.0, //v7 // Left face
-1.0, 1.0, 1.0, //v8
-1.0, 1.0, -1.0, //v9
-1.0, -1.0, -1.0, //v10
-1.0, -1.0, 1.0, //v11 // Right face
1.0, 1.0, 1.0, //12
1.0, -1.0, 1.0, //13
1.0, -1.0, -1.0, //14
1.0, 1.0, -1.0, //15 // Top face
1.0, 1.0, 1.0, //v16
1.0, 1.0, -1.0, //v17
-1.0, 1.0, -1.0, //v18
-1.0, 1.0, 1.0, //v19 // Bottom face
1.0, -1.0, 1.0, //v20
1.0, -1.0, -1.0, //v21
-1.0, -1.0, -1.0, //v22
-1.0, -1.0, 1.0, //v23
]; gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(cubeVertexPosition),
gl.STATIC_DRAW); pwgl.CUBE_VERTEX_POS_BUF_ITEM_SIZE = 3;
pwgl.CUBE_VERTEX_POS_BUF_NUM_ITEMS = 24; // Specify normals to be able to do lighting calculations
pwgl.cubeVertexNormalBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexNormalBuffer); //指定立方体的每一个面的法向量
var cubeVertexNormals = [
// Front face
0.0, 0.0, 1.0, //v0
0.0, 0.0, 1.0, //v1
0.0, 0.0, 1.0, //v2
0.0, 0.0, 1.0, //v3 // Back face
0.0, 0.0, -1.0, //v4
0.0, 0.0, -1.0, //v5
0.0, 0.0, -1.0, //v6
0.0, 0.0, -1.0, //v7 // Left face
-1.0, 0.0, 0.0, //v8
-1.0, 0.0, 0.0, //v9
-1.0, 0.0, 0.0, //v10
-1.0, 0.0, 0.0, //v11 // Right face
1.0, 0.0, 0.0, //12
1.0, 0.0, 0.0, //13
1.0, 0.0, 0.0, //14
1.0, 0.0, 0.0, //15 // Top face
0.0, 1.0, 0.0, //v16
0.0, 1.0, 0.0, //v17
0.0, 1.0, 0.0, //v18
0.0, 1.0, 0.0, //v19 // Bottom face
0.0, -1.0, 0.0, //v20
0.0, -1.0, 0.0, //v21
0.0, -1.0, 0.0, //v22
0.0, -1.0, 0.0, //v23
]; gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(cubeVertexNormals),
gl.STATIC_DRAW); pwgl.CUBE_VERTEX_NORMAL_BUF_ITEM_SIZE = 3;
pwgl.CUBE_VERTEX_NORMAL_BUF_NUM_ITEMS = 24; // Setup buffer with texture coordinates
pwgl.cubeVertexTextureCoordinateBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexTextureCoordinateBuffer);
var textureCoordinates = [
//Front face
0.0, 0.0, //v0
1.0, 0.0, //v1
1.0, 1.0, //v2
0.0, 1.0, //v3 // Back face
0.0, 1.0, //v4
1.0, 1.0, //v5
1.0, 0.0, //v6
0.0, 0.0, //v7 // Left face
0.0, 1.0, //v8
1.0, 1.0, //v9
1.0, 0.0, //v10
0.0, 0.0, //v11 // Right face
0.0, 1.0, //v12
1.0, 1.0, //v13
1.0, 0.0, //v14
0.0, 0.0, //v15 // Top face
0.0, 1.0, //v16
1.0, 1.0, //v17
1.0, 0.0, //v18
0.0, 0.0, //v19 // Bottom face
0.0, 1.0, //v20
1.0, 1.0, //v21
1.0, 0.0, //v22
0.0, 0.0, //v23
]; gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureCoordinates),gl.STATIC_DRAW);
pwgl.CUBE_VERTEX_TEX_COORD_BUF_ITEM_SIZE = 2;
pwgl.CUBE_VERTEX_TEX_COORD_BUF_NUM_ITEMS = 24; pwgl.cubeVertexIndexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, pwgl.cubeVertexIndexBuffer);
var cubeVertexIndices = [
0, 1, 2, 0, 2, 3, // Front face
4, 6, 5, 4, 7, 6, // Back face
8, 9, 10, 8, 10, 11, // Left face
12, 13, 14, 12, 14, 15, // Right face
16, 17, 18, 16, 18, 19, // Top face
20, 22, 21, 20, 23, 22 // Bottom face
];
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(cubeVertexIndices),
gl.STATIC_DRAW);
pwgl.CUBE_VERTEX_INDEX_BUF_ITEM_SIZE = 1;
pwgl.CUBE_VERTEX_INDEX_BUF_NUM_ITEMS = 36;
} function textureFinishedLoading(image, texture) {
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true); gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE,
image); gl.generateMipmap(gl.TEXTURE_2D); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.MIRRORED_REPEAT);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.MIRRORED_REPEAT);
gl.bindTexture(gl.TEXTURE_2D, null);
} function loadImageForTexture(url, texture) {
var image = new Image();
image.onload = function() {
pwgl.ongoingImageLoads.splice(pwgl.ongoingImageLoads.indexOf(image), 1);
textureFinishedLoading(image, texture);
}
pwgl.ongoingImageLoads.push(image);
image.src = url;
} function setupTextures() {
// Texture for the table
pwgl.woodTexture = gl.createTexture();
loadImageForTexture("./resources/wood_128x128.jpg", pwgl.woodTexture); // Texture for the floor
pwgl.groundTexture = gl.createTexture();
loadImageForTexture("./resources/wood_floor_256.jpg", pwgl.groundTexture); // Texture for the box on the table
pwgl.boxTexture = gl.createTexture();
loadImageForTexture("./resources/wicker_256.jpg", pwgl.boxTexture); //创建一个立方体
pwgl.colorCube = gl.createTexture();
loadImageForTexture("./resources/xiuxiuba.bmp", pwgl.colorCube);
} function setupBuffers() {
setupFloorBuffers();
setupCubeBuffers();
} //设置光源位置,环境光颜色,漫反射光颜色,镜面反射光
function setupLights() {
gl.uniform3fv(pwgl.uniformLightPositionLoc, [0.0, 20.0, 0.0]);
gl.uniform3fv(pwgl.uniformAmbientLightColorLoc, [0.2, 0.2, 0.2]);
gl.uniform3fv(pwgl.uniformDiffuseLightColorLoc, [0.7, 0.7, 0.7]);
gl.uniform3fv(pwgl.uniformSpecularLightColorLoc, [0.8, 0.8, 0.8]);
} function uploadModelViewMatrixToShader() {
gl.uniformMatrix4fv(pwgl.uniformMVMatrixLoc, false, pwgl.modelViewMatrix);
} function uploadProjectionMatrixToShader() {
gl.uniformMatrix4fv(pwgl.uniformProjMatrixLoc,
false, pwgl.projectionMatrix);
} //上传法向量的矩阵到着色器
function uploadNormalMatrixToShader() {
var normalMatrix = mat3.create();
//计算矩阵的逆
mat4.toInverseMat3(pwgl.modelViewMatrix, normalMatrix);
//计算转置矩阵
mat3.transpose(normalMatrix);
//把法向量矩阵传给着色器
gl.uniformMatrix3fv(pwgl.uniformNormalMatrixLoc, false, normalMatrix);
} function drawFloor() {
// Bind position buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexPositionBuffer);
gl.vertexAttribPointer(pwgl.vertexPositionAttributeLoc,
pwgl.FLOOR_VERTEX_POS_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0); // Bind normal buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexNormalBuffer);
gl.vertexAttribPointer(pwgl.vertexNormalAttributeLoc,
pwgl.FLOOR_VERTEX_NORMAL_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0); // Bind texture coordinate buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexTextureCoordinateBuffer);
gl.vertexAttribPointer(pwgl.vertexTextureAttributeLoc,
pwgl.FLOOR_VERTEX_TEX_COORD_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0); gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, pwgl.groundTexture); // Bind index buffer and draw the floor
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, pwgl.floorVertexIndexBuffer);
gl.drawElements(gl.TRIANGLE_FAN, pwgl.FLOOR_VERTEX_INDEX_BUF_NUM_ITEMS,
gl.UNSIGNED_SHORT, 0);
} function drawCube(texture) {
// Bind position buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexPositionBuffer);
gl.vertexAttribPointer(pwgl.vertexPositionAttributeLoc,
pwgl.CUBE_VERTEX_POS_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0); // Bind normal buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexNormalBuffer);
gl.vertexAttribPointer(pwgl.vertexNormalAttributeLoc,
pwgl.CUBE_VERTEX_NORMAL_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0); // Bind texture coordinate buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexTextureCoordinateBuffer);
gl.vertexAttribPointer(pwgl.vertexTextureAttributeLoc,
pwgl.CUBE_VERTEX_TEX_COORD_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0); gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture); // Bind index buffer and draw cube
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, pwgl.cubeVertexIndexBuffer); gl.drawElements(gl.TRIANGLES, pwgl.CUBE_VERTEX_INDEX_BUF_NUM_ITEMS,
gl.UNSIGNED_SHORT, 0);
} function drawTable(){
// Draw a simple table by modifying the modelview matrix
// (translate and scale) and then use the function drawCube()
// to draw a table top and four table legs. pushModelViewMatrix();
mat4.translate(pwgl.modelViewMatrix, [0.0, 1.0, 0.0], pwgl.modelViewMatrix);
mat4.scale(pwgl.modelViewMatrix, [2.0, 0.1, 2.0], pwgl.modelViewMatrix);
uploadModelViewMatrixToShader();
uploadNormalMatrixToShader();
// Draw the actual cube (now scaled to a cuboid) with woodTexture
drawCube(pwgl.woodTexture);
popModelViewMatrix(); // Draw the table legs
for (var i=-1; i<=1; i+=2) {
for (var j= -1; j<=1; j+=2) {
pushModelViewMatrix();
mat4.translate(pwgl.modelViewMatrix, [i*1.9, -0.1, j*1.9], pwgl.modelViewMatrix);
mat4.scale(pwgl.modelViewMatrix, [0.1, 1.0, 0.1], pwgl.modelViewMatrix);
uploadModelViewMatrixToShader();
uploadNormalMatrixToShader();
drawCube(pwgl.woodTexture);
popModelViewMatrix();
}
}
} pwgl.yRot = 0;
function draw(currentTime) {
pwgl.requestId = requestAnimFrame(draw);
if (currentTime === undefined) {
currentTime = Date.now();
}
currentTime = Date.now(); // Update FPS if a second or more has passed since last FPS update
if(currentTime - pwgl.previousFrameTimeStamp >= 1000) {
pwgl.fpsCounter.innerHTML = pwgl.nbrOfFramesForFPS;
pwgl.nbrOfFramesForFPS = 0;
pwgl.previousFrameTimeStamp = currentTime;
} gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
mat4.perspective(60, gl.viewportWidth / gl.viewportHeight,
1, 100.0, pwgl.projectionMatrix);
mat4.identity(pwgl.modelViewMatrix);
mat4.lookAt([8, 12, 8],[0, 0, 0], [0, 1,0], pwgl.modelViewMatrix);
mat4.rotateY(pwgl.modelViewMatrix, pwgl.yRot, pwgl.modelViewMatrix);
pwgl.yRot += 0.01; uploadModelViewMatrixToShader();
uploadProjectionMatrixToShader();
uploadNormalMatrixToShader();
gl.uniform1i(pwgl.uniformSamplerLoc, 0); drawFloor(); // Draw table
pushModelViewMatrix();
mat4.translate(pwgl.modelViewMatrix, [0.0, 1.1, 0.0], pwgl.modelViewMatrix);
uploadModelViewMatrixToShader();
uploadNormalMatrixToShader();
drawTable();
popModelViewMatrix(); // Calculate the position for the box that is initially
// on top of the table but will then be moved during animation
pushModelViewMatrix();
if (currentTime === undefined) {
currentTime = Date.now();
}
if (pwgl.animationStartTime === undefined) {
pwgl.animationStartTime = currentTime;
}
// Update the position of the box
if (pwgl.y < 5) {
// First move the box vertically from its original position on top of
// the table (where y = 2.7) to 5 units above the floor (y = 5).
// Let this movement take 3 seconds
pwgl.y = 2.7 + (currentTime - pwgl.animationStartTime)/3000 * (5.0-2.7);
}
else {
// Then move the box in a circle where one revolution takes 2 seconds
pwgl.angle = (currentTime - pwgl.animationStartTime)/2000*2*Math.PI % (2*Math.PI); pwgl.x = Math.cos(pwgl.angle) * pwgl.circleRadius;
pwgl.z = Math.sin(pwgl.angle) * pwgl.circleRadius;
} mat4.translate(pwgl.modelViewMatrix, [pwgl.x, pwgl.y, pwgl.z], pwgl.modelViewMatrix);
mat4.scale(pwgl.modelViewMatrix, [0.5, 0.5, 0.5], pwgl.modelViewMatrix);
uploadModelViewMatrixToShader();
uploadNormalMatrixToShader();
drawCube(pwgl.boxTexture);
popModelViewMatrix(); // Update number of drawn frames to be able to count fps
pwgl.nbrOfFramesForFPS++;
} function handleContextLost(event) {
event.preventDefault();
cancelRequestAnimFrame(pwgl.requestId); // Ignore all ongoing image loads by removing
// their onload handler
for (var i = 0; i < pwgl.ongoingImageLoads.length; i++) {
pwgl.ongoingImageLoads[i].onload = undefined;
}
pwgl.ongoingImageLoads = [];
} function init() {
// Initialization that is performed during first startup, but when the
// event webglcontextrestored is received is included in this function.
setupShaders();
setupBuffers();
setupLights();
setupTextures();
gl.clearColor(0.0, 0.0, 0.0, 1.0);
gl.enable(gl.DEPTH_TEST); // Initialize some varibles for the moving box
pwgl.x = 0.0;
pwgl.y = 2.7;
pwgl.z = 0.0;
pwgl.circleRadius = 4.0;
pwgl.angle = 0;
// Initialize some variables related to the animation
pwgl.animationStartTime = undefined;
pwgl.nbrOfFramesForFPS = 0;
pwgl.previousFrameTimeStamp = Date.now();
} function handleContextRestored(event) {
init();
pwgl.requestId = requestAnimFrame(draw,canvas);
} function startup() {
canvas = document.getElementById("myGLCanvas");
canvas = WebGLDebugUtils.makeLostContextSimulatingContext(canvas); canvas.addEventListener('webglcontextlost', handleContextLost, false);
canvas.addEventListener('webglcontextrestored', handleContextRestored, false); gl = createGLContext(canvas);
init(); pwgl.fpsCounter = document.getElementById("fps"); // Uncomment the three lines of code below to be able to test lost context
// window.addEventListener('mousedown', function() {
// canvas.loseContext();
// }); // Draw the complete scene
draw();
}
</script> </head> <body onload="startup();">
<canvas id="myGLCanvas" width="500" height="500"></canvas>
<div id="fps-counter">
FPS: <span id="fps">--</span>
</div>
</body> </html>

WEBGL学习【十一】光照模型的更多相关文章

  1. WebGL学习(1) - 三角形

    原文地址:WebGL学习(1) - 三角形 还记得第一次看到canvas的粒子特效的时候,真的把我给惊艳到了,原来在浏览器也能做出这么棒的效果.结合<HTML5 Canvas核心技术>和网 ...

  2. WebGL学习(2) - 3D场景

    原文地址:WebGL学习(2) - 3D场景 经过前面WebGL学习(1) - 三角形的学习,我们已经掌握了webGL的基础知识,也已经能够画出最基本的图形,比如点,线,三角形,矩形等.有了2D绘图的 ...

  3. WebGL学习(3) - 3D模型

      原文地址:WebGL学习(3) - 3D模型   相信很多人是以创建逼真酷炫的三维效果为目标而学习webGL的吧,首先我就是

  4. WebGL学习之纹理贴图

    为了使图形能获得接近于真实物体的材质效果,一般会使用贴图,贴图类型主要包括两种:漫反射贴图和镜面高光贴图.其中漫反射贴图可以同时实现漫反射光和环境光的效果. 实际效果请看demo:纹理贴图 2D纹理 ...

  5. 【转载】 强化学习(十一) Prioritized Replay DQN

    原文地址: https://www.cnblogs.com/pinard/p/9797695.html ------------------------------------------------ ...

  6. webgl学习笔记五-纹理

    写在前面 建议先阅读下前面我的三篇文章. webgl学习笔记一-绘图单点 webgl学习笔记二-绘图多点 webgl学习笔记三-平移旋转缩放 术语 : 纹理 :图像 图形装配区域 :顶点着色器顶点坐标 ...

  7. webgl学习笔记四-动画

    写在前面 建议先阅读下前面我的三篇文章. webgl学习笔记一-绘图单点 webgl学习笔记二-绘图多点 webgl学习笔记三-平移旋转缩放   下面我们将讲解下如何让一个正方形动起来~不断擦除和重绘 ...

  8. webgl学习笔记三-平移旋转缩放

    写在前面 建议先阅读下前面我的两篇文章. webgl学习笔记一-绘图单点 webgl学习笔记二-绘图多点 平移 1.关键点说明 顶点着色器需要加上 uniform vec4 u_Translation ...

  9. webgl学习笔记二-绘图多点

    写在前面 建议先看下第一篇webgl学习笔记一-绘图单点 第一篇文章,介绍了如何用webgl绘图一个点.接下来本文介绍的是如何绘制多个点.形成一个面. webgl提供了一种很方便的机制,即缓冲区对象, ...

  10. WebGL学习之法线贴图

    实际效果请看demo:纹理贴图 为了增加额外细节,提升真实感,我们使用了漫反射贴图和高光贴图,它们都是向三角形进行附加纹理.但是从光的视角来看是表面法线向量使表面被视为平坦光滑的表面.以光照算法的视角 ...

随机推荐

  1. 0208MySQL5.7之Group Replication

    转自http://blog.itpub.net/29510932/viewspace-2055679/ MySQL Group Replication: Hello World! 对测试版(on la ...

  2. STL之rb_tree的find函数

    1 通用的search方法 STL在实现对特定key值的查找时,并没有採用通用的方法: BRTreeNode * rb_tree_search(RBTreeNode * x, int key){ wh ...

  3. HDU 2457

    直接从root遍历扩展DP,当扩展到的字母和字符串字母相同时,不用修改,不同时,要求修改加1 注意不要扩展危险结点. #include <iostream> #include <cs ...

  4. 将linux下的rm命令改造成移动文件至回收站

    将linux下的rm命令改造成移动文件至回收站 rm是Linux下文件删除的命令,它是Linux下非常强大却又非常危险的一条命令,特别是rm -rf有时候强大到让你欲哭无泪,当你想清除当前目录下的所有 ...

  5. luogu1313 计算系数

    题目大意:给定一个多项式(ax+by)^k,请求出多项式展开后x^n*y^m 项的系数. 将原式化为(ax+by)*(ax+by)*...①,然后将其拆解,拆解时x乘了多少次,a就乘了多少次,y,b同 ...

  6. 【BZOJ 2982】 combination

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2982 [算法] lucas定理 [代码] #include<bits/stdc ...

  7. JPA设置表名和实体名,表字段与实体字段的对应

    转自:https://blog.csdn.net/LQW_java_home/article/details/53079363 首先 你的jpaProperties配置项中要有 <prop ke ...

  8. HTML5动态时钟

    实现效果 源码可以去github下载 地址:https://github.com/feifeiliu/jsBlock 参考:慕课网动态时钟

  9. ASP.NET MVC上传文件 未显示页面,因为请求实体过大。解方案

    在Dropzone中设置   maxFilesize: 350, //MB 但上传的文件没有到最大限定350MB,就报出来 未显示页面,因为请求实体过大的错误 Web.config中设置  maxAl ...

  10. 组合模式(composite)C++实现

    组合模式 意图: 将对象组合成树形结构以表示‘部分-整体’的层次结构,所以有时候又叫做部分-整体模式.组合模式使得用户对单个对象和组合对象的使用具有一致性.,它使我们树型结构的问题中,模糊了简单元素和 ...