在xcode中使用mlmodel模型,之前说的最简单的方法是将模型拖进工程中即可,xcode会自动生成有关模型的前向预测接口,这种方式非常简单,但是更新模型就很不方便。

今天说下另外一种通过URL加载mlmodel的方式。具体可以查阅apple开发者官方文档 https://developer.apple.com/documentation/coreml/mlmodel

流程如下:

1.提供mlmodel的文件所在路径model_path

NSString *model_path = "path_to/.mlmodel"

2.将NSSting类型转换为NSURL,并根据路径对模型进行编译(编译出的为.mlmodelc 文件, 这是一个临时文件,如果需要,可以将其保存到一个固定位置:https://developer.apple.com/documentation/coreml/core_ml_api/downloading_and_compiling_a_model_on_the_user_s_device

NSURL *url = [NSURL fileURLWithPath:model_path isDirectory:FALSE];
NSURL *compile_url = [MLModel compileModelAtURL:url error:&error];

3.根据编译后模型所在路径,加载模型,类型为MLModel

MLModel *compiled_model = [MLModel modelWithContentsOfURL:compile_url configuration:model_config error:&error];

4.需要注意的是采用动态编译方式,coreml只是提供了一种代理方式MLFeatureProvider,类似于C++中的虚函数。因此需要自己重写模型输入和获取模型输出的类接口(该类继承自MLFeatureProvider)。如下自己封装的MLModelInput和MLModelOutput类。MLModelInput类可以根据模型的输入名称InputName,传递data给模型。而MLModelOutput可以根据不同的输出名称featureName获取预测结果。

这个是头文件:

#import <Foundation/Foundation.h>
#import <CoreML/CoreML.h> NS_ASSUME_NONNULL_BEGIN /// Model Prediction Input Type
API_AVAILABLE(macos(10.13), ios(11.0), watchos(4.0), tvos(11.0))
@interface MLModelInput : NSObject<MLFeatureProvider> //the input name,default is image
@property (nonatomic, strong) NSString *inputName; //data as color (kCVPixelFormatType_32BGRA) image buffer
@property (readwrite, nonatomic) CVPixelBufferRef data; - (instancetype)init NS_UNAVAILABLE; - (instancetype)initWithData:(CVPixelBufferRef)data inputName:(NSString *)inputName; @end API_AVAILABLE(macos(10.13), ios(11.0), watchos(4.0), tvos(11.0))
@interface MLModelOutput : NSObject<MLFeatureProvider> //the output name, defalut is feature
@property (nonatomic, strong) NSString *outputName; // feature as multidimensional array of doubles
@property (readwrite, nonatomic) MLMultiArray *feature; - (instancetype)init NS_UNAVAILABLE; - (instancetype)initWithFeature:(MLMultiArray *)feature;
@end NS_ASSUME_NONNULL_END

这个是类方法实现的文件:

@implementation MLModelInput

- (instancetype)initWithData:(CVPixelBufferRef)data inputName:(nonnull NSString *)inputName {
if (self) {
_data = data;
_inputName = inputName;
}
return self;
} - (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[self.inputName]];
} - (nullable MLFeatureValue *)featureValueForName:(nonnull NSString *)featureName {
if ([featureName isEqualToString:self.inputName]) {
return [MLFeatureValue featureValueWithPixelBuffer:_data];
}
return nil;
} @end @implementation MLModelOutput - (instancetype)initWithFeature:(MLMultiArray *)feature{
if (self) {
_feature = feature;
_outputName = DefalutOutputValueName;
}
return self;
} - (NSSet<NSString *> *)featureNames{
return [NSSet setWithArray:@[self.outputName]];
} - (nullable MLFeatureValue *)featureValueForName:(nonnull NSString *)featureName {
if ([featureName isEqualToString:self.outputName]) {
return [MLFeatureValue featureValueWithMultiArray:_feature];
}
return nil;
} @end

5. 模型预测,获取预测结果。上面这两个类接口写完后,就可以整理输入数据为CvPixelBuffer,然后通过获取模型描述MLModelDescription得到输入名称,根据输入名称创建MLModelInput,预测,然后再根据MLModelOutput中的featureNames获取对应的预测输出数据,类型为MLMultiArray:

MLModelDescription *model_description = compiled_model.modelDescription;
NSDictionary *dict = model_description.inputDescriptionsByName;
NSArray<NSString *> *feature_names = [dict allKeys];
NSString *input_feature_name = feature_names[];
NSError *error;
MLModelInput *model_input = [[MLModelInput alloc] initWithData:buffer inputName:input_feature_name];
id<MLFeatureProvider> model_output = [compiled_model predictionFromFeatures:model_input options:option error:&error];
NSSet<NSString *> *out_feature_names = [model_output featureNames];
NSArray<NSString *> *name_list = [out_feature_names allObjects];
NSUInteger size = [name_list count];
std::vector<MLMultiArray *> feature_list;
for (NSUInteger i = 0; i < size; i++) {
NSString *name = [name_list objectAtIndex:i];
MLMultiArray *feature = [model_output featureValueForName:name].multiArrayValue;
feature_list.push_back(feature);
}

6.读取MLMultiArray中的预测结果数据做后续处理..

coreml之通过URL加载模型的更多相关文章

  1. tensorflowjs下载源文件到本地不能加载模型解决方案

    大多数情况(非源文件错误)下载源文件到本地不能加载模型,那么你可能需要搭建一个本地WEB服务器. 1.安装apache或ngnix,可以参照这个博客 2.强烈推荐一个Chrome插件Web Serve ...

  2. C#开发BIMFACE系列37 网页集成开发1:审图系统中加载模型或图纸

    系列目录     [已更新最新开发文章,点击查看详细] 在之前的<C#开发BIMFACE系列>中主要介绍了BIMFACE平台提供的服务端API接口的封装开发与测试过程. 服务端API测试通 ...

  3. C#开发BIMFACE系列50 Web网页中使用jQuery加载模型与图纸

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在前一篇博客<C#开发BIMFACE系列49 Web网页集成BIMFACE应用的技术方案>中介绍了目前市场主流 ...

  4. C#开发BIMFACE系列53 WinForm程序中使用CefSharp加载模型图纸1 简单应用

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在我的博客<C#开发BIMFACE系列52 CS客户端集成BIMFACE应用的技术方案>中介绍了多种集成BIM ...

  5. NeHe OpenGL教程 第三十一课:加载模型

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  6. URL加载系统----iOS工程师必须熟练掌握

    URL加载系统----iOS工程师必须熟练掌握     iOS根本离不开网络——不论是从服务端读写数据.向系统分发计算任务,还是从云端加载图片.音频.视频等.   当应用程序面临处理问题的抉择时,通常 ...

  7. tensorflow学习笔记2:c++程序静态链接tensorflow库加载模型文件

    首先需要搞定tensorflow c++库,搜了一遍没有找到现成的包,于是下载tensorflow的源码开始编译: tensorflow的contrib中有一个makefile项目,极大的简化的接下来 ...

  8. 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)

    1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...

  9. PyTorch保存模型与加载模型+Finetune预训练模型使用

    Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了da ...

随机推荐

  1. Windows Azure Virtual Machine (39) 清除Linux挖矿病毒

    <Windows Azure Platform 系列文章目录> 1.之前客户遇到了Azure Linux CPU 100%,症状如下: 2.SSH登录到Linux,查看crontab,有从 ...

  2. LeetCode 752:打开转盘锁 Open the Lock

    题目: 你有一个带有四个圆形拨轮的转盘锁.每个拨轮都有10个数字: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' .每个拨轮可以自由旋转:例如把 ' ...

  3. vue项目使用Ueditor富文本编辑器总结

    我使用的是前端大佬封装的vue-ueditor-wrap插件,结合ueditor本身的压缩包开发的. 1.下载vue-ueditor-wrap: npm install vue-ueditor-wra ...

  4. 1.go语言入门

    1.Go语言中文网,选择相应版本(32位或64位)下载 https://studygolang.com/dl, 2.解压到一个任意文件夹 3.配置环境变量 cmd命令行输入go version查看当前 ...

  5. Python复杂对象转JSON

    Python复杂对象转JSON在Python对于简单的对象转json还是比较简单的,如下: import json d = {'a': 'aaa', 'b': ['b1', 'b2', 'b3'], ...

  6. 利用正则来查找字符串中第n个匹配字符索引

    1.string.IndexOf()方法可以获得第一个匹配项的索引 2.要获取第n个匹配项的索引:  方法1:利用IndexOf方法循环获取. 方法2:用正则来查找. System.Text.Regu ...

  7. VS Code 自动修改和保存 代码风格 == eslint+prettier

    最近因为用到VS Code,需要统一所有人的代码风格(前端语言js/html/css等,或者后端语言 go/python等也可以这么用). 所以参考了一些网络资料,记录下设置步骤,以便后续查阅. St ...

  8. python 排序 拓扑排序

    在计算机科学领域中,有向图的拓扑排序是其顶点的先行排序,对于每个从顶点u到顶点v的有向边uv,在排序的结果中u都在v之前. 如果图是有向无环图,则拓扑排序是可能的(为什么不说一定呢?) 任何DAG具有 ...

  9. Python【day 13】内置函数01

    1.python3.6.2 一共有 68个内置函数2.分成6个大类 1.反射相关-4个 2.面向对象相关-9个 3.作用域相关--2个 1.globlas() #注意:最后是s,复数形式 查看全局作用 ...

  10. 打造游戏金融小程序行业测试标准腾讯WeTest携各专家共探品质未来

    在获客成本不断上升的时代里,产品品质愈发是互联网应用的决胜标准.随着用户需求更加多样,开发者不仅要深挖应用功能,更需要面向业务所在领域,建立全面.专业的测试架构,掌控开发进度.提高开发效率,才能在互联 ...