【转】Go 内存管理
1. 前言
编写过C语言程序的肯定知道通过malloc()方法动态申请内存,其中内存分配器使用的是glibc提供的ptmalloc2。
除了glibc,业界比较出名的内存分配器有Google的tcmalloc和Facebook的jemalloc。二者在避免内存碎片和性能上均比glic有比较大的优势,在多线程环境中效果更明显。
Golang中也实现了内存分配器,原理与tcmalloc类似,简单的说就是维护一块大的全局内存,每个线程(Golang中为P)维护一块小的私有内存,私有内存不足再从全局申请。
另外,内存分配与GC(垃圾回收)关系密切,所以了解GC前有必要了解内存分配的原理。
2. 基础概念
为了方便自主管理内存,做法便是先向系统申请一块内存,然后将内存切割成小块,通过一定的内存分配算法管理内存。
以64位系统为例,Golang程序启动时会向系统申请的内存如下图所示:
预申请的内存划分为spans、bitmap、arena三部分。其中arena即为所谓的堆区,应用中需要的内存从这里分配。其中spans和bitmap是为了管理arena区而存在的。
arena的大小为512G,为了方便管理把arena区域划分成一个个的page,每个page为8KB,一共有512GB/8KB个页;
spans区域存放span的指针,每个指针对应一个page,所以span区域的大小为(512GB/8KB)*指针大小8byte = 512M
bitmap区域大小也是通过arena计算出来,不过主要用于GC。
2.1 span
span是用于管理arena页的关键数据结构,每个span中包含1个或多个连续页,为了满足小对象分配,span中的一页会划分更小的粒度,而对于大对象比如超过页大小,则通过多页实现。
2.1.1 class
跟据对象大小,划分了一系列class,每个class都代表一个固定大小的对象,以及每个span的大小。如下表所示:
// class bytes/obj bytes/span objects waste bytes
// 1 8 8192 1024 0
// 2 16 8192 512 0
// 3 32 8192 256 0
// 4 48 8192 170 32
// 5 64 8192 128 0
// 6 80 8192 102 32
// 7 96 8192 85 32
// 8 112 8192 73 16
// 9 128 8192 64 0
// 10 144 8192 56 128
// 11 160 8192 51 32
// 12 176 8192 46 96
// 13 192 8192 42 128
// 14 208 8192 39 80
// 15 224 8192 36 128
// 16 240 8192 34 32
// 17 256 8192 32 0
// 18 288 8192 28 128
// 19 320 8192 25 192
// 20 352 8192 23 96
// 21 384 8192 21 128
// 22 416 8192 19 288
// 23 448 8192 18 128
// 24 480 8192 17 32
// 25 512 8192 16 0
// 26 576 8192 14 128
// 27 640 8192 12 512
// 28 704 8192 11 448
// 29 768 8192 10 512
// 30 896 8192 9 128
// 31 1024 8192 8 0
// 32 1152 8192 7 128
// 33 1280 8192 6 512
// 34 1408 16384 11 896
// 35 1536 8192 5 512
// 36 1792 16384 9 256
// 37 2048 8192 4 0
// 38 2304 16384 7 256
// 39 2688 8192 3 128
// 40 3072 24576 8 0
// 41 3200 16384 5 384
// 42 3456 24576 7 384
// 43 4096 8192 2 0
// 44 4864 24576 5 256
// 45 5376 16384 3 256
// 46 6144 24576 4 0
// 47 6528 32768 5 128
// 48 6784 40960 6 256
// 49 6912 49152 7 768
// 50 8192 8192 1 0
// 51 9472 57344 6 512
// 52 9728 49152 5 512
// 53 10240 40960 4 0
// 54 10880 32768 3 128
// 55 12288 24576 2 0
// 56 13568 40960 3 256
// 57 14336 57344 4 0
// 58 16384 16384 1 0
// 59 18432 73728 4 0
// 60 19072 57344 3 128
// 61 20480 40960 2 0
// 62 21760 65536 3 256
// 63 24576 24576 1 0
// 64 27264 81920 3 128
// 65 28672 57344 2 0
// 66 32768 32768 1 0
上表中每列含义如下:
- class: class ID,每个span结构中都有一个class ID, 表示该span可处理的对象类型
- bytes/obj:该class代表对象的字节数
- bytes/span:每个span占用堆的字节数,也即页数*页大小
- objects: 每个span可分配的对象个数,也即(bytes/spans)/(bytes/obj)
- waste bytes: 每个span产生的内存碎片,也即(bytes/spans)%(bytes/obj)
上表可见最大的对象是32K大小,超过32K大小的由特殊的class表示,该class ID为0,每个class只包含一个对象。
2.1.2 span数据结构
span是内存管理的基本单位,每个span用于管理特定的class对象, 跟据对象大小,span将一个或多个页拆分成多个块进行管理。
src/runtime/mheap.go:mspan
定义了其数据结构:
- type mspan struct
- {
- next *mspan //链表前向指针,用于将span链接起来
- prev *mspan //链表前向指针,用于将span链接起来
- startAddr uintptr // 起始地址,也即所管理页的地址
- npages uintptr // 管理的页数
- nelems uintptr // 块个数,也即有多少个块可供分配
- allocBits *gcBits //分配位图,每一位代表一个块是否已分配
- allocCount uint16 // 已分配块的个数
- spanclass spanClass // class表中的class ID
- elemsize uintptr // class表中的对象大小,也即块大小
- }
以class 10为例,span和管理的内存如下图所示:
spanclass为10,参照class表可得出npages=1,nelems=56,elemsize为144。其中startAddr是在span初始化时就指定了某个页的地址。allocBits指向一个位图,每位代表一个块是否被分配,本例中有两个块已经被分配,其allocCount也为2。
next和prev用于将多个span链接起来,这有利于管理多个span,接下来会进行说明。
2.2 cache
有了管理内存的基本单位span,还要有个数据结构来管理span,这个数据结构叫mcentral,各线程需要内存时从mcentral管理的span中申请内存,为了避免多线程申请内存时不断的加锁,Golang为每个线程分配了span的缓存,这个缓存即是cache。
src/runtime/mcache.go:mcache
定义了cache的数据结构:
- type mcache struct
- {
- alloc [67*2]*mspan // 按class分组的mspan列表
- }
alloc为mspan的指针数组,数组大小为class总数的2倍。数组中每个元素代表了一种class类型的span列表,每种class类型都有两组span列表,第一组列表中所表示的对象中包含了指针,第二组列表中所表示的对象不含有指针,这么做是为了提高GC扫描性能,对于不包含指针的span列表,没必要去扫描。
根据对象是否包含指针,将对象分为noscan和scan两类,其中noscan代表没有指针,而scan则代表有指针,需要GC进行扫描。
mcache和span的对应关系如下图所示:
mchache在初始化时是没有任何span的,在使用过程中会动态的从central中获取并缓存下来,跟据使用情况,每种class的span个数也不相同。上图所示,class 0的span数比class1的要多,说明本线程中分配的小对象要多一些。
2.3 central
cache作为线程的私有资源为单个线程服务,而central则是全局资源,为多个线程服务,当某个线程内存不足时会向central申请,当某个线程释放内存时又会回收进central。
src/runtime/mcentral.go:mcentral
定义了central数据结构:
- type mcentral struct
- {
- lock mutex //互斥锁
- spanclass spanClass // span class ID
- nonempty mSpanList // non-empty 指还有空闲块的span列表
- empty mSpanList // 指没有空闲块的span列表
- nmalloc uint64 // 已累计分配的对象个数
- }
- lock: 线程间互斥锁,防止多线程读写冲突
- spanclass : 每个mcentral管理着一组有相同class的span列表
- nonempty: 指还有内存可用的span列表
- empty: 指没有内存可用的span列表
- nmalloc: 指累计分配的对象个数
线程从central获取span步骤如下:
- 加锁
- 从nonempty列表获取一个可用span,并将其从链表中删除
- 将取出的span放入empty链表
- 将span返回给线程
- 解锁
- 线程将该span缓存进cache
线程将span归还步骤如下:
- 加锁
- 将span从empty列表删除
- 将span加入noneempty列表
- 解锁
上述线程从central中获取span和归还span只是简单流程,为简单起见,并未对具体细节展开。
2.4 heap
从mcentral数据结构可见,每个mcentral对象只管理特定的class规格的span。事实上每种class都会对应一个mcentral,这个mcentral的集合存放于mheap数据结构中。
src/runtime/mheap.go:mheap
定义了heap的数据结构:
- type mheap struct
- {
- lock mutex
- spans []*mspan
- bitmap uintptr //指向bitmap首地址,bitmap是从高地址向低地址增长的
- arena_start uintptr //指示arena区首地址
- arena_used uintptr //指示arena区已使用地址位置
- central [67*2]struct
- {
- mcentral mcentral
- pad [sys.CacheLineSize - unsafe.Sizeof(mcentral{})%sys.CacheLineSize]byte
- }
- }
- lock: 互斥锁
- spans: 指向spans区域,用于映射span和page的关系
- bitmap:bitmap的起始地址
- arena_start: arena区域首地址
- arena_used: 当前arena已使用区域的最大地址
- central: 每种class对应的两个mcentral
从数据结构可见,mheap管理着全部的内存,事实上Golang就是通过一个mheap类型的全局变量进行内存管理的。
mheap内存管理示意图如下:
系统预分配的内存分为spans、bitmap、arean三个区域,通过mheap管理起来。接下来看内存分配过程。
3. 内存分配过程
针对待分配对象的大小不同有不同的分配逻辑:
- (0, 16B) 且不包含指针的对象: Tiny分配
- (0, 16B) 包含指针的对象:正常分配
- [16B, 32KB] : 正常分配
- (32KB, -) : 大对象分配 其中Tiny分配和大对象分配都属于内存管理的优化范畴,这里暂时仅关注一般的分配方法。
以申请size为n的内存为例,分配步骤如下:
- 获取当前线程的私有缓存mcache
- 跟据size计算出适合的class的ID
- 从mcache的alloc[class]链表中查询可用的span
- 如果mcache没有可用的span则从mcentral申请一个新的span加入mcache中
- 如果mcentral中也没有可用的span则从mheap中申请一个新的span加入mcentral
- 从该span中获取到空闲对象地址并返回
4. 总结
Golang内存分配是个相当复杂的过程,其中还掺杂了GC的处理,这里仅仅对其关键数据结构进行了说明,了解其原理而又不至于深陷实现细节。
- Golang程序启动时申请一大块内存,并划分成spans、bitmap、arena区域
- arena区域按页划分成一个个小块
- span管理一个或多个页
- mcentral管理多个span供线程申请使用
- mcache作为线程私有资源,资源来源于mcentral
转发:https://my.oschina.net/renhc/blog/2236782
【转】Go 内存管理的更多相关文章
- .NET基础拾遗(1)类型语法基础和内存管理基础
Index : (1)类型语法.内存管理和垃圾回收基础 (2)面向对象的实现和异常的处理 (3)字符串.集合与流 (4)委托.事件.反射与特性 (5)多线程开发基础 (6)ADO.NET与数据库开发基 ...
- PHP扩展-生命周期和内存管理
1. PHP源码结构 PHP的内核子系统有两个,ZE(Zend Engine)和PHP Core.ZE负责将PHP脚本解析成机器码(也成为token符)后,在进程空间执行这些机器码:ZE还负责内存管理 ...
- linux2.6 内存管理——逻辑地址转换为线性地址(逻辑地址、线性地址、物理地址、虚拟地址)
Linux系统中的物理存储空间和虚拟存储空间的地址范围分别都是从0x00000000到0xFFFFFFFF,共4GB,但物理存储空间与虚拟存储空间布局完全不同.Linux运行在虚拟存储空间,并负责把系 ...
- linux2.6 内存管理——概述
在紧接着相当长的篇幅中,都是围绕着Linux如何管理内存进行阐述,在内核中分配内存并不是一件非常容易的事情,因为在此过程中必须遵从内核特定的状态约束.linux内存管理建立在基本的分页机制基础上,在l ...
- Objective-C内存管理之引用计数
初学者在学习Objective-c的时候,很容易在内存管理这一部分陷入混乱状态,很大一部分原因是没有弄清楚引用计数的原理,搞不明白对象的引用数量,这样就当然无法彻底释放对象的内存了,苹果官方文档在内存 ...
- Quartz2D内存管理
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "PingFang SC"; color: #239619 } p.p2 ...
- 浅谈Linux内存管理机制
经常遇到一些刚接触Linux的新手会问内存占用怎么那么多?在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然.这是Linux内存管理的一个优秀特性,在这 ...
- linux内存管理
一.Linux 进程在内存中的数据结构 一个可执行程序在存储(没有调入内存)时分为代码段,数据段,未初始化数据段三部分: 1) 代码段:存放CPU执行的机器指令.通常代码区是共享的,即其它执行程 ...
- cocos2d-x内存管理
Cocos2d-x内存管理 老师让我给班上同学讲讲cocos2d-x的内存管理,时间也不多,于是看了看源码,写了个提纲和大概思想 一. 为什么需要内存管理 1. new和delete 2. 堆上申 ...
- Swift中的可选链与内存管理(干货系列)
干货之前:补充一下可选链(optional chain) class A { var p: B? } class B { var p: C? } class C { func cm() -> S ...
随机推荐
- linux 成功安装oracle后,为其创建一个登录账户
成功安装oracle后,创建一个登录账户 1.切换到oracle用户下 su -l oracle 2.使用sysdba账户登录: sqlplus / as sysdba 3.创建用户 语法:CREAT ...
- LeetCode 561:数组拆分 I Array Partition I
文章全部来自公众号:爱写bug 算法是一个程序的灵魂. Given an array of 2n integers, your task is to group these integers into ...
- [转帖]linux基础知识大纲
linux基础知识大纲 https://blog.csdn.net/CSDN___LYY/article/details/80810403 1.Linux操作系统概述Linux操作系统的发展过程.创始 ...
- 小程序开发笔记【五】---基于LBS附近动态查询
实现思路 : 获取用户当前位置经纬度坐标 查询动态时将经纬度坐标传给后台 后端通过sql语句计算经纬度坐标之间的距离 // 附近20公里发的动态 按时间排序 let sql = `SELECT * , ...
- 百度前端技术学院task1 总结
1.居中:当使用text-align或者vatical-align无法达到居中的时候,如果知道元素的大小,可以采用先设为left或right为50%,再设置margin-left或者margin-ri ...
- Vector线程安全,ArrayList非线程安全
http://baijiahao.baidu.com/s?id=1638844080997170869&wfr=spider&for=pc Vector线程安全,ArrayList非线 ...
- SpringBoot整合PageHelper做多条件分页查询
https://yq.aliyun.com/articles/619586 本篇博客讲述如何在SpringBoot中整合PageHelper,如何实现带多个条件,以及PageInfo中的属性的中文解释 ...
- C# winform中组合键奇怪不响应问题
再winform中使用ProcessCmdKey处理快捷键响应,针对单一快捷键响应没有任何问题.但是针对组合键总是无法响应,如下: protected override bool ProcessCmd ...
- 深入理解Session和Cookie的区别
Cookie简介 Cookie意为“甜饼”,是由W3C组织提出,最早由Netscape社区发展的一种机制. 目前Cookie已经成为标准,所有的主流浏览器如IE.Netscape.Firefox.Op ...
- Java解析复杂JSON数据的一种方法
1.需解析JSON数据: { "code": 0, "message": "success", "sid": " ...