codeforces

思路

我顺着图论的标签点进去的,却没想到……

可以发现排列内每一个数都是集合里的数异或出来的。

考虑答案的上界是多少。如果能用小于\(2^k\)的数构造出\([0,2^k-1]\)内所有的数,那么答案就对这个\(k\)取\(\max\)。很显然这一定是上界。

考虑能不能构造出一组解。把\([1,2^k-1]\)的数拎出来插入线性基里得到一组极大线性无关组,那么显然它的\(size\)就是\(k\)。由于它线性无关,所以任意选取一个子集得到的异或和都不会相同,所以考虑把\(0\)放在左边,然后每次异或上线性无关组里的一个元素,取遍所有集合。

取集合可以递归进行:对于大小为\(m\)的集合,先把\(m-1\)的取遍,然后取第\(m\)个元素,然后再把\(m-1\)的集合取一遍,就可以保证相邻的集合只有一个位置不同,并且所有集合两两不同。

代码

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 303030
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifdef NTFOrz
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifdef NTFOrz
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int n,K=20,m;
int a[sz],b[sz],lg2[sz]; int lb[sz],cnt;
bool insert(int x)
{
drep(i,K,0) if (x>>i&1)
{
if (!lb[i]) return lb[i]=x,++cnt,1;
x^=lb[i];
}
return 0;
}
int cur;
void dfs(int m)
{
if (m==0) printf("%d ",cur);
else dfs(m-1),cur^=b[m],dfs(m-1);
} int main()
{
file();
read(n);
rep(i,1,n) read(a[i]);
sort(a+1,a+n+1);
int ans=0;
rep(i,2,sz-1) lg2[i]=lg2[i>>1]+1;
for (int k=0,i=1;k<=K;k++)
{
while (i<=n&&lg2[a[i]]==k) insert(a[i]),++i;
if (cnt==k+1) ans=k+1;
}
printf("%d\n",ans);
rep(i,0,K) lb[i]=0;
rep(i,1,n) if (lg2[a[i]]<ans&&insert(a[i])) b[++m]=a[i];
dfs(m);
return 0;
}

Codeforces 1163E Magical Permutation [线性基,构造]的更多相关文章

  1. 51Nod1577 异或凑数 线性基 构造

    国际惯例的题面:异或凑出一个数,显然是线性基了.显然我们能把区间[l,r]的数全都扔进一个线性基,然后试着插入w,如果能插入,则说明w不能被这些数线性表出,那么就要输出"NO"了. ...

  2. CodeForces - 587E[线段树+线性基+差分] ->(线段树维护区间合并线性基)

    题意:给你一个数组,有两种操作,一种区间xor一个值,一个是查询区间xor的结果的种类数 做法一:对于一个给定的区间,我们可以通过求解线性基的方式求出结果的种类数,而现在只不过将其放在线树上维护区间线 ...

  3. BZOJ3569: DZY Loves Chinese II(线性基构造)

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生.   今Dzy有一魞歄图, ...

  4. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  5. CF1163E Magical Permutation(线性基,构造)

    虽然做起来有一点裸……但是就是想不到啊…… 首先令 $d_i=p_i\oplus p_{i-1}$,那么 $d_i$ 都是 $S$ 中的数,$a_i=d_i\oplus d_{i-1}\oplus \ ...

  6. CF1163E Magical Permutation【线性基,构造】

    题目描述:输入一个大小为\(n\)的正整数集合\(S\),求最大的\(x\),使得能构造一个\(0\)到\(2^x-1\)的排列\(p\),满足\(p_i\oplus p_{i+1}\in S\) 数 ...

  7. Codeforces.472F.Design Tutorial: Change the Goal(构造 线性基 高斯消元)

    题目链接 \(Description\) 给定两个长为\(n\)的数组\(x_i,y_i\).每次你可以选定\(i,j\),令\(x_i=x_i\ \mathbb{xor}\ x_j\)(\(i,j\ ...

  8. CodeForces 587 E.Duff as a Queen 线段树动态维护区间线性基

    https://codeforces.com/contest/587/problem/E 一个序列, 1区间异或操作 2查询区间子集异或种类数 题解 解题思路大同小异,都是利用异或的性质进行转化,st ...

  9. Codeforces 1101G(线性基)

    题目链接 题意 将序列尽可能分成多段使得任意$x \geq 1$段内的所有元素的异或和大于$0$问最多多少段 思路 首先,如果所有元素异或和等于$0$答案显然为$-1$,否则构造整个序列的线性基,这个 ...

随机推荐

  1. string.Compare()方法

    判断字符串中是否包含一个值 返回一个值,该值指示指定的 String 对象是否出现在此字符串中. String a = "abcd"; if(source.a("a&qu ...

  2. windows上git clone命令速度过慢问题的解决

    在windows上用git clone 命令克隆一个仓库,速度非常的慢,但是浏览器访问github的速度确挺正常的,我也用了翻墙软件(SSR). git设置一下全局代理可以解决这个问题: git co ...

  3. 【开发工具】-Idea代码提示忽略大小写

    设置路径:File–>Settings–>Editor–>General–>Code Completion–>Match case 取消Match case 勾选. [o ...

  4. springCloud学习笔记2(服务发现)

    本篇代码存放于:https://github.com/FleyX/demo-project/tree/master/springcloud/spring-cloud%E6%9C%8D%E5%8A%A1 ...

  5. 单词dyamaund钻石dyamaund英语

    dyamaund  英文词汇,中文翻译为金刚石的;镶钻;用钻石装饰 中文名:镶钻;钻石装饰 外文名:dyamaund 目录 释义 dyamaund 读音:[?da??m?nd, ?da?m?nd] ...

  6. 【故障处理】分布式事务ORA-01591错误解决

    [故障处理]分布式事务ORA-01591错误解决 1  BLOG文档结构图       2  前言部分 2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你 ...

  7. 罗技k380在iOS下无法输入英文引号

    本来打算用iPad远程控制电脑主机进行编程的,但是在键盘回来之后开始试着用的时候发现没法输入英文状态的引号. 各种更换输入法都没有用.没有英文引号还写个锤子的代码. 解决办法:设置-通用-键盘,然后将 ...

  8. pipy配置镜像源

    新电脑第一次使用使用pip命令下载贼慢 我们需要使用国内pipy镜像,参考如下 https://mirrors.tuna.tsinghua.edu.cn/help/pypi/ 所以只要设置一下就行了: ...

  9. Python开发应用-正则表达进行排序搜索

    re模块提供了3个方法对输入的字符串进行确切的查询,match和search最多只会返回一个匹配条件的子串,可以理解为非贪婪模式,而findall会返回N个匹配条件的子串,可以理解为贪婪模式 re.m ...

  10. Laravel —— tips 总结

    一.Laravel 中 ajax 请求需要设置 header $.ajaxSetup({headers: {'X-CSRF-TOKEN': $('meta[name="csrf-token& ...