https://pytorch.org/docs/stable/tensors.html

dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor,而且这种类型的别名也可以写作torch.Tensor。

device: 这个参数表示了tensor将会在哪个设备上分配内存。它包含了设备的类型(cpucuda)和可选设备序号。如果这个值是缺省的,那么默认为当前的活动设备类型。

require_grad: 这个标志表明这个tensor的操作是否会被pytorch的自动微分系统(Autograd)记录其操作过程,以便后续自动求导。

layout: 表示了tensor的内存分布方式。目前,pytorch支持torch.strided方式以及实验性质地支持torch.sparse_coo。前者是目前普遍的使用方式。每一个strided tensor都关联一个torch.storage以保存其数据。

创建

典型的tensor构建方法:

torch.tensor(data, dtype=None, device=None, requires_grad=False)

从其他形式转换而来:

torch.as_tensor(data, dtype=None, device=None)

torch.from_numpy(ndarray)

创建特殊值组成的tensor:

torch.zeros(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False)

torch.ones(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

torch.ones_like(input, dtype=None, layout=None, device=None, requires_grad=False)

torch.eye(n, m=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

torch.empty(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

torch.empty_like(input, dtype=None, layout=None, device=None, requires_grad=False)

torch.full(size, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

torch.full_like(input, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

按照步长或者区间创建tensor:

torch.arange(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

torch.range(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

torch.linspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

torch.logspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False)

索引,分块,组合,变形

组合--拼接

torch.cat(seq, dim=0, out=None):按照已经存在的维度进行concatenate。

在指定的维度dim上对序列seq进行连接操作。例如:

参数:

seq (sequence of Tensors) - Python序列或相同类型的张量序列

dim (int, optional) - 沿着此维度连接张量

out (Tensor, optional) - 输出参数

x = torch.randn(2, 3)

x

-0.5866 -0.3784 -0.1705

-1.0125 0.7406 -1.2073

[torch.FloatTensor of size 2x3]

torch.cat((x, x, x), 0)

-0.5866 -0.3784 -0.1705

-1.0125 0.7406 -1.2073

-0.5866 -0.3784 -0.1705

-1.0125 0.7406 -1.2073

-0.5866 -0.3784 -0.1705

-1.0125 0.7406 -1.2073

[torch.FloatTensor of size 6x3]

torch.cat((x, x, x), 1)

-0.5866 -0.3784 -0.1705 -0.5866 -0.3784 -0.1705 -0.5866 -0.3784 -0.1705

-1.0125 0.7406 -1.2073 -1.0125 0.7406 -1.2073 -1.0125 0.7406 -1.2073

[torch.FloatTensor of size 2x9]

torch.stack(seq, dim=0, out=None):按照新的维度进行concatenate。

在指定的维度dim上对序列seq进行连接操作。例如:

a = torch.IntTensor([[1,2,3],[11,22,33]])

b = torch.IntTensor([[4,5,6],[44,55,66]])

c = torch.stack([a,b],0)

d = torch.stack([a,b],1)

e = torch.stack([a,b],2)

c :tensor([[[ 1,  2,  3],

[11, 22, 33]],

[[ 4,  5,  6],

[44, 55, 66]]], dtype=torch.int32)

d :tensor([[[ 1,  2,  3],

[ 4,  5,  6]],

[[11, 22, 33],

[44, 55, 66]]], dtype=torch.int32)

e :tensor([[[ 1,  4],

[ 2,  5],

[ 3,  6]],

[[11, 44],

[22, 55],

[33, 66]]], dtype=torch.int32)

c, dim = 0时

c = [ a, b]

d, dim =1 时

d = [ [a[0] , b[0] ] , [a[1], b[1] ] ]

e, dim = 2 时

e=[[[a[0][0],b[0][0]],[a[0][1],b[0][1]],[a[0][2],b[0][2]]],[[a[1][0],b[1][0]],[a[1][1],b[0][1]],[a[1][2],b[1][2]]]]

分块

torch.chunk(tensor, chunks, dim=0):按照某个维度平均分块(最后一个可能小于平均值)

torch.split(tensor, split_size_or_sections, dim=0):按照某个维度依照第二个参数给出的list或者int进行分割tensor。

索引

torch.gather(input, dim, index, out=None):沿给定轴 dim ,将输入索引张量 index 指定位置的值进行聚合输出tensor。输入与输出大小一致。

例如:

对一个 3 维张量,输出可以定义为:

out[i][j][k] = input[index[i][j][k]][j][k]  # if dim == 0

out[i][j][k] = input[i][index[i][j][k]][k]  # if dim == 1

out[i][j][k] = input[i][j][index[i][j][k]]  # if dim == 2

  • input (Tensor) – 源张量
  • dim (int) – 索引的轴
  • index (LongTensor) – 聚合元素的下标(index需要是torch.longTensor类型)
  • out (Tensor, optional) – 目标张量

dim = 1

a = torch.randint(0, 30, (2, 3, 5))

print(a)

'''

tensor([[[ 18.,   5.,   7.,   1.,   1.],

[  3.,  26.,   9.,   7.,   9.],

[ 10.,  28.,  22.,  27.,   0.]],

[[ 26.,  10.,  20.,  29.,  18.],

[  5.,  24.,  26.,  21.,   3.],

[ 10.,  29.,  10.,   0.,  22.]]])

'''

index = torch.LongTensor([[[0,1,2,0,2],

[0,0,0,0,0],

[1,1,1,1,1]],

[[1,2,2,2,2],

[0,0,0,0,0],

[2,2,2,2,2]]])

print(a.size()==index.size())

b = torch.gather(a, 1,index)

print(b)

'''

True

tensor([[[ 18.,  26.,  22.,   1.,   0.],

[ 18.,   5.,   7.,   1.,   1.],

[  3.,  26.,   9.,   7.,   9.]],

[[  5.,  29.,  10.,   0.,  22.],

[ 26.,  10.,  20.,  29.,  18.],

[ 10.,  29.,  10.,   0.,  22.]]])

可以看到沿着dim=1,也就是列的时候。输出tensor第一页内容,

第一行分别是 按照index指定的,

input tensor的第一页

第一列的下标为0的元素 第二列的下标为1元素 第三列的下标为2的元素,第四列下标为0元素,第五列下标为2元素

index-->0,1,2,0,2    output--> 18.,  26.,  22.,   1.,   0.

'''

dim =2

c = torch.gather(a, 2,index)

print(c)

'''

tensor([[[ 18.,   5.,   7.,  18.,   7.],

[  3.,   3.,   3.,   3.,   3.],

[ 28.,  28.,  28.,  28.,  28.]],

[[ 10.,  20.,  20.,  20.,  20.],

[  5.,   5.,   5.,   5.,   5.],

[ 10.,  10.,  10.,  10.,  10.]]])

dim = 2的时候就安装 行 聚合了。参照上面的举一反三。

'''

dim = 0

index2 = torch.LongTensor([[[0,1,1,0,1],

[0,1,1,1,1],

[1,1,1,1,1]],

[[1,0,0,0,0],

[0,0,0,0,0],

[1,1,0,0,0]]])

d = torch.gather(a, 0,index2)

print(d)

'''

tensor([[[ 18.,  10.,  20.,   1.,  18.],

[  3.,  24.,  26.,  21.,   3.],

[ 10.,  29.,  10.,   0.,  22.]],

[[ 26.,   5.,   7.,   1.,   1.],

[  3.,  26.,   9.,   7.,   9.],

[ 10.,  29.,  22.,  27.,   0.]]])

这个有点特殊,dim = 0的时候(三维情况下),是从不同的页收集元素的。

这里举的例子只有两页。所有index在0,1两个之间选择。

输出的矩阵元素也是按照index的指定。分别在第一页和第二页之间跳着选的。

index [0,1,1,0,1]的意思就是。

在第一页选这个位置的元素,在第二页选这个位置的元素,在第二页选,第一页选,第二页选。

'''

torch.index_select(input, dim, index, out=None):选出一维度的一些slice组合成新的tensor。指定维度的大小与index大小一致。

torch.masked_select(input, mask, out=None):按照mask输出一个一维的tensor。

torch.take(input, indices):将输入看成1D tensor,按照索引得到输出。输出大小与index大小一致。

torch.nonzero(input, out=None):输出非0元素的坐标。

torch.where(condition, x, y):按照条件从x和y中选出满足条件的元素组成新的tensor。

变形

torch.reshape(input, shape)

torch.t(input):只针对2D tensor转置

torch.transpose(input, dim0, dim1):交换两个维度

torch.squeeze(input, dim=None, out=None):去除那些维度大小为1的维度,如果输入张量的形状为(A×1×B×C×1×D),那么输出张量的形状为(A×B×C×D)

torch.unbind(tensor, dim=0):去除某个维度

torch.unsqueeze(input, dim, out=None):在指定位置添加维度

数学运算

Pointwise Ops 逐点操作

torch.addcdiv(tensor, value=1, tensor1, tensor2, out=None)

torch.addcmul(tensor, value=1, tensor1, tensor2, out=None)

torch.ceil(input, out=None)

torch.clamp(input, min, max, out=None)max或者min可以用*代替,表示没有该项限制

torch.erf(tensor, out=None)

torch.fmod(input, divisor, out=None): 计算余数

torch.frac(tensor, out=None)

torch.lerp(start, end, weight, out=None)

torch.neg(input, out=None)

torch.pow(base, input, out=None)

torch.reciprocal(input, out=None)

torch.remainder(input, divisor, out=None):计算余数

torch.rsqrt(input, out=None)

torch.sign(input, out=None):取符号

torch.trunc(input, out=None):截取整数部分

Reduction Ops 归约操作

torch.dist(input, other, p=2) 计算p范数

torch.norm() 计算2范数

torch.prod() 计算所有元素的积

torch.unique(input, sorted=False, return_inverse=False) 以1D向量保存张量中不同的元素。

Comparison Ops 比较操作

torch.isfinite(tensor)/torch.isinf(tensor)/torch.isnan(tensor)返回一个标记元素是否为 finite/inf/nan 的mask 张量。

torch.kthvalue(input, k, dim=None, keepdim=False, out=None) -> (Tensor, LongTensor):返回最小的第k个元素,如果为指定维度,则默认为最后一个维度。

torch.sort(input, dim=None, descending=False, out=None):沿着某一维度对张量进行升序排列。

torch.topk(input, k, dim=None, largest=True, sorted=True, out=None):返回最大的k个元素。

Other Operations 其他操作

torch.bincount(self, weights=None, minlength=0):返回每个值得频数。

torch.cross(input, other, dim=-1, out=None):按照维度计算叉积。

torch.diag(input, diagonal=0, out=None):如果输入时1D,则返回一个相应的对角矩阵;如果输入时2D,则返回相应对角线的元素。

torch.flip(input, dims):按照给定维度翻转张量

torch.histc(input, bins=100, min=0, max=0, out=None):计算张量的直方图。

torch.meshgrid(seq):生成网格(可以生成坐标)。

查看张量单个元素的字节数

torch.Tensor.element_size() → int

查看某类型张量单个元素的字节数。

例如:

torch.FloatTensor().element_size()

Pytorch Tensor 常用操作的更多相关文章

  1. 第五章——Pytorch中常用的工具

    2018年07月07日 17:30:40 __矮油不错哟 阅读数:221   1. 数据处理 数据加载 ImageFolder DataLoader加载数据 sampler:采样模块 1. 数据处理 ...

  2. Tensor索引操作

    #Tensor索引操作 ''''' Tensor支持与numpy.ndarray类似的索引操作,语法上也类似 如无特殊说明,索引出来的结果与原tensor共享内存,即修改一个,另一个会跟着修改 ''' ...

  3. 【三】用Markdown写blog的常用操作

    本系列有五篇:分别是 [一]Ubuntu14.04+Jekyll+Github Pages搭建静态博客:主要是安装方面 [二]jekyll 的使用 :主要是jekyll的配置 [三]Markdown+ ...

  4. php模拟数据库常用操作效果

    test.php <?php header("Content-type:text/html;charset='utf8'"); error_reporting(E_ALL); ...

  5. Mac OS X常用操作入门指南

    前两天入手一个Macbook air,在装软件过程中摸索了一些基本操作,现就常用操作进行总结, 1关于触控板: 按下(不区分左右)            =鼠标左键 control+按下        ...

  6. mysql常用操作语句

    mysql常用操作语句 1.mysql -u root -p   2.mysql -h localhost -u root -p database_name 2.列出数据库: 1.show datab ...

  7. nodejs配置及cmd常用操作

    一.cmd常用操作 1.返回根目录cd\ 2.返回上层目录cd .. 3.查找当前目录下的所有文件dir 4.查找下层目录cd window 二.nodejs配置 Node.js安装包及源码下载地址为 ...

  8. Oracle常用操作——创建表空间、临时表空间、创建表分区、创建索引、锁表处理

    摘要:Oracle数据库的库表常用操作:创建与添加表空间.临时表空间.创建表分区.创建索引.锁表处理 1.表空间 ■  详细查看表空间使用状况,包括总大小,使用空间,使用率,剩余空间 --详细查看表空 ...

  9. python 异常处理、文件常用操作

    异常处理 http://www.jb51.net/article/95033.htm 文件常用操作 http://www.jb51.net/article/92946.htm

随机推荐

  1. Prometheus配置文件

    在prometheus监控系统,prometheus的职责是采集,查询和存储和推送报警到alertmanager.本文主要介绍下prometheus的配置文件. 全局配置文件简介 默认配置文件 按 C ...

  2. Java 中Math常用方法

    import java.text.SimpleDateFormat; import java.util.Date; public class Test4 { public static void ma ...

  3. MySQL事务(脏读、不可重复读、幻读)

    1. 什么是事务? 是数据库操作的最小工作单元,是作为单个逻辑工作单元执行的一系列操作:这些操作作为一个整体一起向系统提交,要么都执行.要么都不执行:事务是一组不可再分割的操作集合(工作逻辑单元): ...

  4. 独立成分分析 ICA 原理及公式推导 示例

    独立成分分析(Independent component analysis) 前言 独立成分分析ICA是一个在多领域被应用的基础算法.ICA是一个不定问题,没有确定解,所以存在各种不同先验假定下的求解 ...

  5. 教你怎样用fluent长网格【转载】

    转载地址: http://blog.sina.cn/dpool/blog/s/blog_63a80e870100k1jo.html?type=-1 有的时候,当你十月怀胎,千辛万苦把网格生出来,导入f ...

  6. 和小哥哥一起刷洛谷(4) 图论之广度优先搜索BFS

    关于bfs: 你怎么会连这个都不知道!!!自己好好谷歌一下!!!(其实我也刚学) bfs伪代码: while(队列非空){ 取出队首元素u; 弹出队首元素; u染色为黑色; for(int i=0;i ...

  7. game-hacking

    https://github.com/dsasmblr/game-hacking Cheat Engine Hacking memory Cheat engine have a feature cal ...

  8. 巧用 CSS 实现酷炫的充电动画

    循序渐进,看看只使用 CSS ,可以鼓捣出什么样的充电动画效果. 画个电池 当然,电池充电,首先得用 CSS 画一个电池,这个不难,随便整一个: 欧了,勉强就是它了.有了电池,那接下来直接充电吧.最最 ...

  9. python获取公网ip的几种方式

    python获取公网ip的几种方式 转 https://blog.csdn.net/conquerwave/article/details/77666226 from urllib2 import u ...

  10. flutter chip标签组件

    //一个Material widget. 它可以将一个复杂内容实体展现在一个小块中,如联系人.import 'package:flutter/material.dart'; class ChipDem ...