分布式自增ID算法snowflake
分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的,作为索引非常不好,严重影响性能。
snowflake的结构如下(每部分用-分开):
0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
第一个部分,是 1 个 bit:0,这个是无意义的。
第二个部分是 41 个 bit:表示的是时间戳。
第三个部分是 5 个 bit:表示的是机房 id,10001。
第四个部分是 5 个 bit:表示的是机器 id,1 1001。
第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。
snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和workerId作区分),并且效率较高。经测试snowflake每秒能够产生26万个ID。
/**
* Twitter_Snowflake<br>
* SnowFlake的结构如下(每部分用-分开):<br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 -
* 000000000000 <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T
* = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
*/
public class SnowflakeId {
/** 开始时间截 (2015-01-01) */
private final long twepoch = 1420041600000L; /** 机器id所占的位数 */
private final long workerIdBits = 5L; /** 数据标识id所占的位数 */
private final long datacenterIdBits = 5L; /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /** 支持的最大数据标识id,结果是31 */
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /** 序列在id中占的位数 */
private final long sequenceBits = 12L; /** 机器ID向左移12位 */
private final long workerIdShift = sequenceBits; /** 数据标识id向左移17位(12+5) */
private final long datacenterIdShift = sequenceBits + workerIdBits; /** 时间截向左移22位(5+5+12) */
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** 工作机器ID(0~31) */
private long workerId; /** 数据中心ID(0~31) */
private long datacenterId; /** 毫秒内序列(0~4095) */
private long sequence = 0L; /** 上次生成ID的时间截 */
private long lastTimestamp = -1L; /**
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31)
*/
public SnowflakeId(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(
String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(
String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
} /**
* 获得下一个ID (该方法是线程安全的)
*
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen(); // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} // 如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
// 毫秒内序列溢出
if (sequence == 0) {
// 阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
// 时间戳改变,毫秒内序列重置
else {
sequence = 0L;
} // 上次生成ID的时间截
lastTimestamp = timestamp; // 移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift) //
| (datacenterId << datacenterIdShift) //
| (workerId << workerIdShift) //
| sequence;
} /**
* 阻塞到下一个毫秒,直到获得新的时间戳
*
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} /**
* 返回以毫秒为单位的当前时间
*
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
} /** 测试 */
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
SnowflakeId snowflakeId = new SnowflakeId(0, 0);
for (int i = 0; i < 1000; i++) {
long id = snowflakeId.nextId();
System.out.println(Long.toBinaryString(id));
System.out.println(id);
}
long endTime = System.currentTimeMillis();
System.out.println("生成1000个id的时间:" + (endTime - startTime));
}
}
运行结果:
...
生成1000个id的时间:16
效率非常高,1000个id才花费16ms
分布式自增ID算法snowflake的更多相关文章
- Twitter分布式自增ID算法snowflake原理解析
以JAVA为例 Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个 ...
- Twitter分布式自增ID算法snowflake原理解析(Long类型)
Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个Long类型的6 ...
- 详解Twitter开源分布式自增ID算法snowflake(附演算验证过程)
详解Twitter开源分布式自增ID算法snowflake,附演算验证过程 2017年01月22日 14:44:40 url: http://blog.csdn.net/li396864285/art ...
- 分布式自增ID算法-Snowflake详解
1.Snowflake简介 互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并 ...
- 基于.NET Standard的分布式自增ID算法--Snowflake
概述 本篇文章主要讲述分布式ID生成算法中最出名的Snowflake算法.搞.NET开发的,数据库主键最常见的就是int类型的自增主键和GUID类型的uniqueidentifier. 那么为何还要引 ...
- Twitter的分布式自增ID算法snowflake
snowflake 分布式场景下获取自增id git:https://github.com/twitter/snowflake 解读: http://www.cnblogs.com/relucent/ ...
- Twitter的分布式自增ID算法snowflake (Java版)
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...
- 分布式自增ID算法snowflake (Java版)
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...
- Twitter的分布式自增ID算法snowflake(雪花算法) - C#版
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的.有些时候我们希望能使用一种简 ...
随机推荐
- linux设置定时任务的方法步骤
一,首先登录 二,找到文件夹 三,查看定时任务 crontab -l 四,vi root 编辑定时任务 编辑完成后,点ESC,然后:wq 时间格式 分钟 小时 日期 月份 周 命令 数字范围 0-59 ...
- elasticsearch routing
当索引一个文档的时候,文档会被存储到一个主分片中. Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?当我们创建文档时,它如何决定这个文档应当被存储在分片 1 还是分片 2 中呢?首 ...
- Gremlin入门
Gremlin入门 一.Gremlin简介 Gremlin是Apache ThinkerPop框架下的图遍历语言,Gremlin是一种函数式数据流语言,可以使用户使用简洁的方式表述复杂的属性图的遍历或 ...
- docker 访问宿主机网络
使用宿主机IP 在安装Docker的时候,会在宿主机安装一个虚拟网关docker0,我们可以使用宿主机在docker0上的IP地址来代替localhost. 首先,使用如下命令查询宿主机IP地址: i ...
- sqlserver2016 kb补丁
1. win2012r2 安装时 总是提示: 然后费了半天劲 下载下来又提示 找了一下 需要先安装这么一个补丁才可以 KB2919442 然后才能安装上 KB2919355 然后就可以正常安装了:
- linux cat 文件编码
test.log是utf-16的编码 cat test.log会报错 但是我们可以cat的时候指定编码格式 iconv -f 文件编码 -t 终端编码 input.log iconv -f utf-1 ...
- Python3基础 函数 参数为list 使用+=会影响到外部的实参
Python : 3.7.3 OS : Ubuntu 18.04.2 LTS IDE : pycharm-community-2019.1.3 ...
- Python3基础 def 函数要先定义再调用
Python : 3.7.3 OS : Ubuntu 18.04.2 LTS IDE : pycharm-community-2019.1.3 ...
- DEX-6-caffe模型转成pytorch模型办法
在python2.7环境下 文件下载位置:https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/ 1.可视化模型文件prototxt 1)在线可视化 ...
- 在EXE和DLL中,FindResource的区别
转载:https://blog.csdn.net/ithzhang/article/details/7995102 在EXE和DLL中,FindResource的区别 以下的代码在EXE中,执行无误. ...