分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的,作为索引非常不好,严重影响性能。

snowflake的结构如下(每部分用-分开):

0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

  • 第一个部分,是 1 个 bit:0,这个是无意义的。

  • 第二个部分是 41 个 bit:表示的是时间戳。

  • 第三个部分是 5 个 bit:表示的是机房 id,10001。

  • 第四个部分是 5 个 bit:表示的是机器 id,1 1001。

  • 第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。

snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和workerId作区分),并且效率较高。经测试snowflake每秒能够产生26万个ID。

 /**
* Twitter_Snowflake<br>
* SnowFlake的结构如下(每部分用-分开):<br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 -
* 000000000000 <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T
* = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
*/
public class SnowflakeId {
/** 开始时间截 (2015-01-01) */
private final long twepoch = 1420041600000L; /** 机器id所占的位数 */
private final long workerIdBits = 5L; /** 数据标识id所占的位数 */
private final long datacenterIdBits = 5L; /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /** 支持的最大数据标识id,结果是31 */
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /** 序列在id中占的位数 */
private final long sequenceBits = 12L; /** 机器ID向左移12位 */
private final long workerIdShift = sequenceBits; /** 数据标识id向左移17位(12+5) */
private final long datacenterIdShift = sequenceBits + workerIdBits; /** 时间截向左移22位(5+5+12) */
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** 工作机器ID(0~31) */
private long workerId; /** 数据中心ID(0~31) */
private long datacenterId; /** 毫秒内序列(0~4095) */
private long sequence = 0L; /** 上次生成ID的时间截 */
private long lastTimestamp = -1L; /**
* @param workerId 工作ID (0~31)
* @param datacenterId 数据中心ID (0~31)
*/
public SnowflakeId(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(
String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(
String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
} /**
* 获得下一个ID (该方法是线程安全的)
*
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen(); // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} // 如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
// 毫秒内序列溢出
if (sequence == 0) {
// 阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
// 时间戳改变,毫秒内序列重置
else {
sequence = 0L;
} // 上次生成ID的时间截
lastTimestamp = timestamp; // 移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift) //
| (datacenterId << datacenterIdShift) //
| (workerId << workerIdShift) //
| sequence;
} /**
* 阻塞到下一个毫秒,直到获得新的时间戳
*
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} /**
* 返回以毫秒为单位的当前时间
*
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
} /** 测试 */
public static void main(String[] args) {
long startTime = System.currentTimeMillis();
SnowflakeId snowflakeId = new SnowflakeId(0, 0);
for (int i = 0; i < 1000; i++) {
long id = snowflakeId.nextId();
System.out.println(Long.toBinaryString(id));
System.out.println(id);
}
long endTime = System.currentTimeMillis();
System.out.println("生成1000个id的时间:" + (endTime - startTime));
}
}

运行结果:

...
生成1000个id的时间:16

效率非常高,1000个id才花费16ms

分布式自增ID算法snowflake的更多相关文章

  1. Twitter分布式自增ID算法snowflake原理解析

    以JAVA为例 Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个 ...

  2. Twitter分布式自增ID算法snowflake原理解析(Long类型)

    Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个Long类型的6 ...

  3. 详解Twitter开源分布式自增ID算法snowflake(附演算验证过程)

    详解Twitter开源分布式自增ID算法snowflake,附演算验证过程 2017年01月22日 14:44:40 url: http://blog.csdn.net/li396864285/art ...

  4. 分布式自增ID算法-Snowflake详解

    1.Snowflake简介 互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并 ...

  5. 基于.NET Standard的分布式自增ID算法--Snowflake

    概述 本篇文章主要讲述分布式ID生成算法中最出名的Snowflake算法.搞.NET开发的,数据库主键最常见的就是int类型的自增主键和GUID类型的uniqueidentifier. 那么为何还要引 ...

  6. Twitter的分布式自增ID算法snowflake

    snowflake 分布式场景下获取自增id git:https://github.com/twitter/snowflake 解读: http://www.cnblogs.com/relucent/ ...

  7. Twitter的分布式自增ID算法snowflake (Java版)

    概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...

  8. 分布式自增ID算法snowflake (Java版)

    概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...

  9. Twitter的分布式自增ID算法snowflake(雪花算法) - C#版

    概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的.有些时候我们希望能使用一种简 ...

随机推荐

  1. 【知识点】Java机密

    Java添加PDF图章.动态图章 主要实现以下功能: 添加图片图章.即通过加载现有的图章(以图片形式),添加到PDF指定页面位置 添加动态图章.即加载PDF文档,并在动态的添加印章内容,包括印章字样. ...

  2. RHEL7下载

    RHEL7下载地址: http://mirrors.aliyun.com/centos/ 我的百度云盘地址: 链接:https://pan.baidu.com/s/1_-bm12bekFlWJiGHj ...

  3. 搭建K8S集群

    一.前言 我们将现有的虚拟机称之为Node1,用作主节点.为了减少工作量,在Node1安装Kubernetes后,我们利用VirtualBox的虚拟机复制功能,复制出两个完全一样的虚拟机作为工作节点. ...

  4. [转载] 浏览器Browser对同域名下的请求并发数量

    原文链接:https://blog.csdn.net/a562550212/article/details/79552713 另附原文作者贴的一个知乎地址,几个答主讲的非常好  https://www ...

  5. mongo最大连接数查看

    进入客户端 mongo 输入查看命令 db.serverStatus().connections

  6. 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码

    学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...

  7. PHP异步非阻塞fsockopen(本地可以非阻塞请求,服务器就一直执行异步的不成功) (未解决)

    index.php /** * php异步请求 * * @param $host string 主机地址 * @param $path string 路径 * @param $param array ...

  8. 【转】IDEA新建项目时,没有Spring Initializr选项(亲测有效)

    最近开始使用IDEA作为开发工具,然后也是打算开始学习使用spring boot.看着博客来进行操作上手spring boot,很多都是说创建一个新项目(Create New Project) 选择 ...

  9. Java基础 Scanner 使用nextLine接收字符串

        JDK :OpenJDK-11      OS :CentOS 7.6.1810      IDE :Eclipse 2019‑03 typesetting :Markdown   code ...

  10. Leetcode: Minimum Domino Rotations For Equal Row

    In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domin ...