目录

  卷积层的dropout

  全连接层的dropout

  Dropout的反向传播

  Dropout的反向传播举例

  参考资料


在训练过程中,Dropout会让输出中的每个值以概率keep_prob变为原来的1/keep_prob倍,以概率1-keep_prob变为0。也就是在每一轮的训练中让一些神经元随机失活,从而让每一个神经元都有机会得到更高效的学习,会让网络更加健壮,减小过拟合。

在预测过程中,不再随机失活,也不在扩大神经元的输出。

卷积层的dropout

举例:以一个2*4的二维张量为例,参数keep_prob=0.5,其过程如下:

返回目录

全连接层的dropout

Dropout处理一般用在全连接神经网络的全连接层或者卷积网络后面的全连接层。

举例:以全连接网络的某一层为例,参数keep_prob=0.5,每一轮训练对隐藏层的输出做dropout,其过程如下:

隐藏层的激活函数为σ(x)=x

返回目录

Dropout的反向传播

以一个回归案例为例

其中z2神经元会失活,通过如下图的链式法则发现,此轮更新过程中,与失活神经元相连的边上的权重都不会被训练,因为他们的偏导数都=0.

返回目录

Dropout的反向传播举例

举例:dropout的概率p=0.5,激活函数为σ(x)=x,网络结构如下:

假设某样本x的值是3,标签是0.5,训练一个回归模型,因为有dropout的存在,会出现不同的更新情况,下面演示使用样本x反复训练网络,更新网络的过程:

第一轮(假设dropout(z)=2z):

第二轮(假设dropout(z)=0):

第三轮(假设dropout(z)=2z):

返回目录

参考资料

《图解深度学习与神经网络:从张量到TensorFlow实现》_张平

返回目录

深度学习面试题14:Dropout(随机失活)的更多相关文章

  1. 深度学习面试题13:AlexNet(1000类图像分类)

    目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是 ...

  2. 深度学习面试题29:GoogLeNet(Inception V3)

    目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深 ...

  3. 深度学习面试题27:非对称卷积(Asymmetric Convolutions)

    目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减 ...

  4. 深度学习面试题26:GoogLeNet(Inception V2)

    目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separab ...

  5. 深度学习面试题20:GoogLeNet(Inception V1)

    目录 简介 网络结构 对应代码 网络说明 参考资料 简介 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名.VGG获得了第二 ...

  6. 深度学习面试题17:VGGNet(1000类图像分类)

    目录 VGGNet网络结构 论文中还讨论了其他结构 参考资料 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的 ...

  7. 深度学习面试题12:LeNet(手写数字识别)

    目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起 ...

  8. 深度学习面试题25:分离卷积(separable卷积)

    目录 举例 单个张量与多个卷积核的分离卷积 参考资料 举例 分离卷积就是先在深度上分别卷积,然后再进行卷积,对应代码为: import tensorflow as tf # [batch, in_he ...

  9. 深度学习面试题24:在每个深度上分别卷积(depthwise卷积)

    目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于c ...

随机推荐

  1. [C#]DataTable转string[]

    来源:https://zhidao.baidu.com/question/1754089856824824548.html string[] ary = Array.ConvertAll<Dat ...

  2. ceph 剔除osd

    先将osd.2移出集群 root@ceph-monster:~# ceph osd out osd.2 marked out osd.2. root@ceph-monster:~# ceph osd ...

  3. Chrome谷歌浏览器插件-小结

    1.小插件库: Tampermonkey https://chrome.google.com/webstore/detail/tampermonkey-beta/gcalenpjmijncebpfij ...

  4. springboot引用三方jar包

    在springboot项目中可能会用到三方工具类(比如接入短信网关时给出的工具jar包),这时候需要在springboot项目中手动引入进来 1. springboot工程目录, lib/ucpaas ...

  5. gitlab(7.9)升级到8.0.1

    1.gitlab8.0更新说明 GitLab 8.0 现在完全集成了持续集成工具 (GitLab CI) ,此外还完全重写了 UI,节省了至少 50% 的磁盘空间.更快的合并,内置持续集成(CI)到 ...

  6. [ipsec] 特别硬核的ike/ipsec NAT穿越机制分析

    〇 前言 这怕是最后一篇关于IKE,IPSEC的文字了,因为不能没完没了. 所以,我一直在想这个标题该叫什么.总的来说可以将其概括为:IKE NAT穿越机制的分析. 但是,同时它也回答了以下问题: ( ...

  7. LAMP环境搭建基本步骤

    LAMP环境搭建基本步骤 参考链接https://yq.aliyun.com/articles/106387 apache性能优化.配置https://my.oschina.net/lockupme/ ...

  8. UVA816 Abbott's Revenge (三元组BFS)

    题目描述: 输入输出: 输入样例: SAMPLE 3 1 N 3 3 1 1 WL NR * 1 2 WLF NR ER * 1 3 NL ER * 2 1 SL WR NF * 2 2 SL WF ...

  9. SQL EXPLAIN优化详解

    使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是 如何处理你的SQL语句的.分析你的查询语句或是表结构的性能瓶颈.使用方式:Explain+SQL语句执行计划包含的信息: ...

  10. 如何通过cmd获取到域名下的ip地址?例如获取百度的域名

    百度首页的IP地址为[119.75.217.109] 你可以通过电脑本机进行查询,查询步骤如下: 1.点击[开始]--->>[运行],输入[cmd]: 按键盘上的[Win键]+[R键],调 ...