sjp大佬让我写同余那就只能硬着头皮按学长的ppt来写了,咕咕咕

数学符号

不想一个一个打了,凑合着看吧

快速幂

输入b,p,k的值,求b^p mod k的值。

方法一

直接反复平方,复杂度是\(O(n)\)基本没戏会TLE的,不用看了

方法二

如果\(a\)自己乘一次就变成了\(a^2\),\(a^2\)再自乘一次就变成了\(a^4\).....乘\(n\)次就变成了\(2^n\)

我们将b分解成二进制看一下下

假设b=\(11\),分解成二进制就是\((1011)\),从左到右这些 \(1\)分别代表十进制的 \(8\),\(2\),\(1\),也就是\(a^b=a^8 \times a^2 \times a^1\)这就是快速幂的原理

int quick_pow(int a, int b)
{
int ans = 1, base = a;
while(b > 0)
{
if(b & 1)//和b%2!=0一样的效果
ans *= base;//把ans乘上对应的a^(2^n) base *= base;//base自乘
b >>= 1;//位运算,b右移一位,如101变成10(把最右边的1移掉了),10010变成1001。现在b在二进制下最后一位是刚刚的倒数第二位。
}
return ans;
}

同余

概念

若 \(m | (a − b)\),则称$ a \(与\) b \(对模\) m$ 同 余,记作$ a ≡ b (mod m)$

同余的性质

1.自反性:\(a ≡ a\)

2.对称性:若 \(a ≡ b\),则$ b ≡ a\(
3.传递性:若\) a ≡ b\(,\)b ≡ c\(,则\) a ≡ c$

4.同余式相加:若 \(a ≡ b\),\(c ≡ d\),则 \(a ± c ≡ b ± d\)

5.同余式相乘:若 \(a ≡ b\),\(c ≡ d\),则 \(ac ≡ bd\)

6.同幂性:若\(a ≡ b(\mod m)\) 则\(a^n ≡ b^n(\mod m)\)

7.若\(a \mod p=x\) ,\(a \mod q= x\),则 \(p,q\)互质,则 \(a \mod p*q =x\)

证明:

略,太难打了...自行百度吧...咕咕咕

乘法逆元

概念:

若 \(ap ≡ 1 (mod m)\),则称 \(a\) 和 \(p\)在模 $m \(意义下互为乘法逆
元。简称\) a $是 \(p\) 的逆元或$ p$ 是$$ 的逆元。为了方便我们常把 \(a\)

的乘法逆元记做$ a^{-1}$ 。

}

因为 \(a \times a^{-1} ≡ 1\),所以我们可以把$ a^{−1} \(看作\)\frac{1}{a} $。但请注意在模意义下不存在除法操作。乘法逆元可能不存在

来自谷歌的解释:

\(a⋅a′≡1\pmod p\)

我们称a′是a在模p意义下的乘法逆元,记作\(a^{-1}\)。

其用途和倒数类似,若要在模\(p\)意义下将\(a\)除以\(b\),不能直接\(a/b\),因为除法是不满足模运算的,此时我们需要转为乘法:\(a⋅b^{-1}\)。

求逆元的方法

扩展欧几里得

假如\(b=1\),由于\(gcd(a,b)=1\),因此\(a=x=1\)

假如\(b≠1\),不妨假设\(a=kb+r\),并且我们已经求出了\(bx+ry=1\)的一组解\((x_0,y_0)\)

\(bx_0+(a-kb)y_0=1\)

\(ax_1+by_1=1\)

\(bx_0+ay_0-kby_0=b(x_0-ky_0)+ay_0=ax_1+by_1\)

\(x_1=y_0\)

\(y_1=x_0-ky_0\)

那么\((x_1,y_1)\)就是\(ax+by=1\)的一组解,这不就是exgcd?

void exgcd(int a, int b, int& x, int& y) {
if (b == 0) {
x = 1, y = 0;
return;
}
exgcd(b, a % b, y, x);
y -= a / b * x;
}

快速幂法\(o(n*log(n))\)

p是质数

根据费马小定理:

若 \(p\) 为质数, \(a\) 为正整数,且 \(a\) 、 \(p\) 互质,则 \(a^{p-1} \equiv 1 \pmod p\) 。

因 \(ax \equiv 1 \pmod b\)

所以 \(ax \equiv a^{b-1} \pmod b\)

所以 \(x \equiv a^{b-2} \pmod b\)

所以我们可以用快速幂来算出 \(a^{p-2} \pmod p\)值,这个数就是它的逆元了

代码就是快速幂,不会的请点这里

递推法\(o(n)\)

p必须是质数

设 \(p=ki+j,j<i,1<i<p\) ,再放到 \(\mod p\) 意义下就会得到: \(ki+j \equiv 0 \pmod p\)

两边同时乘 \(i^{-1},j^{-1}\) (注意:\(1^{-1} \equiv 1 \pmod p\) )

\(kj^{-1}+i^{-1} \equiv 0 \pmod p\) ;

\(i^{-1} \equiv -kj^{-1}+ \pmod p\) ;

\(i^{-1} \equiv -(\frac{p}{i}) (p \mod i)^{-1}\) ;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<string>
#include<cstring>
#define ll long long int
using namespace std;
const int maxn=999999999;
const int minn=-999999999;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
long long p,c[3000005];
int main()
{
long long n;
scanf("%lld%lld",&n,&p);
c[1]=1;
printf("1\n");
for(register int i=2; i<=n; i++)
{
c[i]=(p-p/i)*c[p%i]%p;
printf("%lld\n",c[i]);
}
return 0;
}

模板题目:

P3811 【模板】乘法逆元

代码:

方法一:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<string>
#include<cstring>
#define ll long long int
using namespace std;
const int maxn=999999999;
const int minn=-999999999;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
long long p,c[3000005];
int main()
{
long long n;
scanf("%lld%lld",&n,&p);
c[1]=1;
printf("1\n");
for(register int i=2; i<=n; i++)
{
c[i]=(p-p/i)*c[p%i]%p;
printf("%lld\n",c[i]);
}
return 0;
}

方法二:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<string>
#include<cstring>
#define ll long long int
using namespace std;
const int maxn=999999999;
const int minn=-999999999;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
long long p;
long long quick_pow(long long x,long long y)
{
long long ans=1;
while(y!=0)
{
if(y&1)
{
ans=((ans%p)*(x%p))%p;
}
x=((x%p)*(x%p))%p;
y>>=1;
}
return ans;
}
int main()
{
long long n;
scanf("%lld%lld",&n,&p);
for( int i=1;i<=n;i++)
{
printf("%lld\n",(quick_pow(i,p-2))%p);
}
return 0;
}

同余and乘法逆元学习笔记的更多相关文章

  1. Servlet乘法表学习笔记

    一.控制台实现乘法表 package com.shanrengo; import java.io.IOException; import java.io.PrintWriter; import jav ...

  2. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. 多项式乘法(FFT)学习笔记

    ------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法  ...

  4. POJ3070 Fibonacci[矩阵乘法]【学习笔记】

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  5. 基于Java的大整数运算的实现(加法,减法,乘法)学习笔记

    大整数,顾名思义就是特别大的整数. 一台64位的机器最大能表示的数字是2的64次方减一: 18446744073709551615 java语言中所能表示的整数(int)最小为-2147483648 ...

  6. 初等数论学习笔记 III:数论函数与筛法

    初等数论学习笔记 I:同余相关. 初等数论学习笔记 II:分解质因数. 1. 数论函数 本篇笔记所有内容均与数论函数相关.因此充分了解各种数论函数的名称,定义,符号和性质是必要的. 1.1 相关定义 ...

  7. 数论同余学习笔记 Part 2

    逆元 准确地说,这里讲的是模意义下的乘法逆元. 定义:如果有同余方程 \(ax\equiv 1\pmod p\),则 \(x\) 称为 \(a\bmod p\) 的逆元,记作 \(a^{-1}\). ...

  8. OI数学 简单学习笔记

    基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...

  9. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

随机推荐

  1. 绝对有效 IntelliJ IDEA2019.2下载、安装及破解教程

        原文链接:https://blog.csdn.net/weixin_43904316/article/details/88881238                   https://bl ...

  2. Spring Boot 的自动配置探究、自制一个starter pom

    //TODO @Conditional @Condition

  3. 2019 京东java面试笔试总结 (含面试题解析)

       本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.京东等公司offer,岗位是Java后端开发,因为发展原因最终选择去了京东,入职一年时间了,也成为了面试官, ...

  4. kvm第一章--概念

  5. vue-awesome-swiper兼容ie9

    轮播插件vue-awesome-swiper在ie9中运行的时候没效果 解决方法: vue-awesome-swiper在IE9下报错, 主要原因是element.classlist.add()方法在 ...

  6. HTNL5-ARIA role属性

    WAI-ARIA Web Accessibility Initiative’s Accessible Rich Internet Applications 无障碍网页倡议–无障碍的富互联网应用,也简称 ...

  7. Django模型层(models.py)之模型创建

    Django数据库操作是十分重要的内容,这两天简单学习了数据库的操作,这里做个总结. 1.ORM简介 简单的来说,ORM就是对象-关系-映射.它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖 ...

  8. Centos7无法使用ssh登陆及解决方案

    查看状态: systemctl status sshd.service 启动服务: systemctl start sshd.service 重启服务: systemctl restart sshd. ...

  9. 摘jmeter安装之后如何汉化

    下载完成后打开bin文件,选择jmeter.properties打开,搜索language,修改成zh_CN,汉化jmeter,记得去掉前面的#号,然后保存,修改完配置文件后需要重启jmeter 用的 ...

  10. pandas 之 多层索引

    In many applications, data may be spread across a number of files or datasets or be arranged in a fo ...