BST、B树、B+树、B*树
一. BST
BST即二叉搜索树Binary Search Tree(又叫二叉排序树Binary Sort Tree)。它有以下特点:
- 所有非叶子结点至多拥有两个儿子(Left和Right);
- 所有结点存储一个关键字;
- 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树。
BST的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销。
但BST树在经过多次插入与删除后,有可能导致不同的结构:
如上图所示,右边也是一个BST,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用BST还要考虑尽可能让该树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;实际使用的BST都是在原BST的基础上加上平衡算法,即“平衡二叉树”;如何保持BST结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在BST中插入和删除结点的策略。
二. B树(B-树)
B-tree树即B树,B即Balanced,平衡的意思。因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,其实,这是个非常不好的直译,很容易让人产生误解。而事实上是,B-tree就是指的B树。特此说明。
B-树是一种多路搜索树(并不一定是二叉的),它定义如下:
- 定义任意非叶子结点最多只有M个儿子;且M>2;
- 根结点的儿子数为[2, M];
- 除根结点以外的非叶子结点的儿子数为[M/2, M];
- 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
- 非叶子结点的关键字个数=指向儿子的指针个数-1;
- 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
- 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
- 所有叶子结点位于同一层;
当M=3时有如下示例:
B树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点。
B树有以下特性:
- 关键字集合分布在整颗树中;
- 任何一个关键字出现且只出现在一个结点中;
- 搜索有可能在非叶子结点结束;
- 其搜索性能等价于在关键字全集内做一次二分查找;
- 自动层次控制;
由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:
其中,M为设定的非叶子结点最多子树个数,N为关键字总数;所以B树的性能总是等价于二分查找(与M值无关),也就没有BST平衡的问题;由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并。
三. B+树
B+树是B-树的变体,也是一种多路搜索树。B+ 树是一个n叉树,每个节点通常有多个孩子,一棵B+树包含根节点、内部节点和叶子节点。根节点可能是一个叶子节点,也可能是一个包含两个或两个以上孩子节点的节点。B+树的定义如下:
- 非叶子结点的子树指针与关键字个数相同;
- 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);
- 为所有叶子结点增加一个链指针;
- 所有关键字都在叶子结点出现;
- 其他定义基本与B-树同。
当M=3时有如下示例:
B+树有以下特性:
- 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
- 不可能在非叶子结点命中;
- 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
- 通常在B+树上有两个头指针,一个指向根结点,一个指向关键字最小的叶子结点。
- 更适合文件索引系统。
一棵m阶的B+树和m阶的B-树的差异在于:
- 有n棵子树的结点中含有n个关键字,每个关键字不保存数据,只用来索引,所有数据都保存在叶子节点。
- 所有的叶子结点中包含了全部关键字的信息,及指向含这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
- 所有的非终端结点可以看成是索引部分,结点中仅含其子树(根结点)中的最大(或最小)关键字。
四. B*树
B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针。
当M=3时有如下示例:
B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2)。
B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父
结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针。
B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针。
所以,B*树分配新结点的概率比B+树要低,空间使用率更高。
五. 小结
BST:每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点。
B(B-)树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中。
B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中。
B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3。
参考:http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
BST、B树、B+树、B*树的更多相关文章
- 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- poj 2104 K-th Number (划分树入门 或者 主席树入门)
题意:给n个数,m次询问,每次询问L到R中第k小的数是哪个 算法1:划分树 #include<cstdio> #include<cstring> #include<alg ...
- 从B 树、B+ 树、B* 树谈到R 树
从B 树.B+ 树.B* 树谈到R 树 作者:July.weedge.Frankie.编程艺术室出品. 说明:本文从B树开始谈起,然后论述B+树.B*树,最后谈到R 树.其中B树.B+树及B*树部分由 ...
- 【BZOJ-3196】二逼平衡树 线段树 + Splay (线段树套平衡树)
3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2271 Solved: 935[Submit][Stat ...
- 【BZOJ-3589】动态树 树链剖分 + 线段树 + 线段覆盖(特殊的技巧)
3589: 动态树 Time Limit: 30 Sec Memory Limit: 1024 MBSubmit: 405 Solved: 137[Submit][Status][Discuss] ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- 【BZOJ1036】[ZJOI2008]树的统计Count 树链剖分
[BZOJ1036][ZJOI2008]树的统计Count Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. ...
- NOIP 2013 货车运输【Kruskal + 树链剖分 + 线段树 】【倍增】
NOIP 2013 货车运输[树链剖分] 树链剖分 题目描述 Description A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在 ...
- 【BZOJ-1452】Count 树状数组 套 树状数组
1452: [JSOI2009]Count Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1769 Solved: 1059[Submit][Stat ...
随机推荐
- AR
http://jingyan.baidu.com/article/6766299727dcfc54d41b8455.html 1.注册.然后下载sdk(注册账号主要是为了第3步中制作识别图而用的) 下 ...
- XE6移动开发环境搭建之IOS篇(5):解决Windows和虚拟机下Mac OSX的共享问题(有图有真相)
网上能找到的关于Delphi XE系列的移动开发环境的相关文章甚少,本文尽量以详细的图文内容.傻瓜式的表达来告诉你想要的答案. 原创作品,请尊重作者劳动成果,转载请注明出处!!! 在安装XE6 PAS ...
- Oracle中的表构造导出到word Sql语句
select * from ( SELECT t1.Table_Name AS "表名称", t3.comments AS "表说明", t1.Column_ ...
- cocos2dx3.0 removeFromParent和removeAllChildren含义
顾名思义,removeFromParent就是把自己从父亲那里移除,removeAllChildren就是移除自己所有的孩子,这些方法的具体实现都在基类Node里面,通过查看代码也很容易看到怎么实现的 ...
- oracle10g配置小记
因对接HIS系统,对方提供了视图.故此我拿起多年不用的ORACLE. 初始安装一切正常,然后打开Net Configuration Assistant配置监听程序. 接着配置 本地NET服务名配置 打 ...
- Android软件更新安装。
app的开发有一个问题是避免不了的,那就是软件的升级维护. 这里我在查过一些资料和写了一个升级帮助类.使用很方便.直接导入就可以了. ( VersionBean.class为更新地址返回的数据对象,我 ...
- CodeBlocks配置pthread环境
参考资料:MinGW配置pthread环境 按[参考资料]里说的[下载资源]后,将libpthreadGC2.a放到codeBlocks安装目录下的MinGW\lib目录下,然后将pthread.h ...
- PHP常见方法
1.获取字符串长度: preg_match_all('/./us', $only, $match); echo count($match[0]); 2.Php除法取整 2.1.round — 对浮点数 ...
- C# 将DataTable存储到DBF文件中
(准备)生成一个DataTable /// <summary> /// 生成一个数据表 /// </summary> /// <returns></retur ...
- 各种数据库分页sql
1.oracle数据库分页 select * from (select a.*,rownum rc from 表名 where rownum<=endrow) a where a.rc>= ...