田里的虫洞

  题目大意:就是这个农夫的田里有一些虫洞,田有很多个点,点与点之间会存在路,走过路需要时间,并且这些点存在虫洞,可以使农夫的时间退回到时间之前,问你农夫是否真的能回到时间之前?

  读完题:这一题就是很明显了,就是要你找负值圈嘛!立马上Bellman_Ford算法

  

#include <iostream>
#include <functional>
#include <algorithm>
#include <queue>
#define MAX_N 501 using namespace std; typedef struct edge_
{
int cost;
int from;
int to;
}Edge;
static Edge Gragh_Edge[MAX_N *MAX_N];
static int dp_edge[MAX_N*MAX_N * + ]; bool Search_Bellman_Ford(const int,const int,const int); int main(void)
{
int Farm_sum, Path_sum, Node_sum, holes_sum, start, end, times;
while (~scanf("%d", &Farm_sum))
{
for (int i = ; i < Farm_sum; i++)
{
scanf("%d%d%d", &Node_sum, &Path_sum, &holes_sum);
for (int j = ; j < * Path_sum; j += )
{
scanf("%d%d%d", &start, &end, &times);
//双向边
Gragh_Edge[j].from = start; Gragh_Edge[j].to = end; Gragh_Edge[j].cost = times;
Gragh_Edge[j + ].from = end; Gragh_Edge[j + ].to = start; Gragh_Edge[j + ].cost = times;
}
for (int j = * Path_sum; j < holes_sum + * Path_sum; j++)
{
scanf("%d%d%d", &start, &end, &times);
Gragh_Edge[j].from = start; Gragh_Edge[j].to = end; Gragh_Edge[j].cost = -times;//单向边,负值,只要覆盖掉之前的正值就可以了
}
if (Search_Bellman_Ford(Node_sum, Path_sum,holes_sum))
printf("YES\n");
else printf("NO\n");
}
}
return ;
} bool Search_Bellman_Ford(const int Node_sum, const int Path_sum, const int holes_sum)
{
int paths = Path_sum * + holes_sum;
memset(dp_edge, , sizeof(dp_edge)); for (int i = ; i < Node_sum; i++)
for (int j = ; j < paths; j++)
{
Edge e = Gragh_Edge[j];
if (dp_edge[e.from] + e.cost < dp_edge[e.to])
{
dp_edge[e.to] = dp_edge[e.from] + e.cost;
if (i == Node_sum - ) return true;
}
}
return false;
}

  结果很高兴地1A了

  当然,这个时间有点慢,我们可以使用SPFA算法优化他

  不过在这之前我们有必要搞清楚什么是SPFA算法,其实这个算法是Bellman_Ford的优化,BF这个算法的缺点在于他一定要把所有的点都扫描n-1次才能确定是否有负值圈,这就造成了低效,而我们知道,其实我们没有必要等所有的节点都到i=n-1的层面,因为如果图不存在负值圈,那么Bellman_Ford以及Dijkstra算法肯定不会经过一个顶点两次,如果存在负圈,那么肯定至少存在一个节点,经过n次以上,那么我们完全可以利用这个性质,在扫n-1次前就找到这个节点,而SPFA算法就是利用这个原理。

  SPFA算法有点像BFS算法,他是充分利用点的关系来找最短路的,而且这个算法还支持负值圈(当然这个算法找正值的最短路径不及Dijkstra那么快),复杂度是O(EV)(没有负值圈的时候),他像BFS一样,不断地把邻接节点入队,然后出队,利用一个used域,我们就可以找到那些不在队中的节点,如果不存在负值圈,那么这些节点就不会经过两次,最终这个算法会以队列为空结束,如果存在负值圈,那么我们需要其他判断方法,这个方法就是判断一个节点是否被进入V次以上(之前说过的性质)。

  其他的也像BF算法一样,还是维护一个dp数组来确定是否更新就可以了

  SPFA因为要对邻接点做处理,所以如果能存边,那就最好了,所以推荐用邻接表,另外ACM因为还是以速度为主,大量的申请内存会导致效率下降,所以如果要维护邻接表,最好还是用向前边的方法维护,就是维护一个head数组,head数组指向第一条边,接下来边指向其他的边就可以了!

  另外这一题因为我们不知道是不是联通,用SPFA还是要稍微判断一下节点有没有经过的问题,没有经过我们就重新设立start节点(这一题讨论版很多人都没考虑到这一点,那是运气好,这一题是联通的,so)

  

 #include <iostream>
#include <functional>
#include <algorithm>
#define MAX_N 501 using namespace std; typedef struct edge_
{
int cost;
int next;
int to;
}Edge;
typedef int Queue, Position;
static Edge Gragh_Edge[MAX_N *MAX_N + ];
static Position head[MAX_N];//用邻接表去存图,这个是节点头
static bool used[MAX_N];//SPFA算法要用到的标记域
static bool known[MAX_N];//判断图是否联通的关键
static int out[MAX_N];//看点出列了多少次
static int dp_edge[MAX_N];//dp数组记录到该点的最短距离
Queue que[MAX_N *MAX_N];//队列 bool Search_Spfa(const int, const int, const int);
void Renew(void); int main(void)
{
int Farm_sum, Path_sum, Node_sum, holes_sum, start, end, times;
while (~scanf("%d", &Farm_sum))
{
for (int i = ; i < Farm_sum; i++)
{
memset(head, -, sizeof(head));
memset(used, , sizeof(used));
memset(known, , sizeof(known));
memset(out, , sizeof(out));
memset(dp_edge, , sizeof(dp_edge));
scanf("%d%d%d", &Node_sum, &Path_sum, &holes_sum);
for (int j = ; j < * Path_sum; j += )
{
scanf("%d%d%d", &start, &end, &times);
//双向边
Gragh_Edge[j].next = head[start]; Gragh_Edge[j].to = end; Gragh_Edge[j].cost = times;
head[start] = j;
Gragh_Edge[j + ].next = head[end]; Gragh_Edge[j + ].to = start; Gragh_Edge[j + ].cost = times;
head[end] = j + ;
}
for (int j = * Path_sum; j < holes_sum + * Path_sum; j++)
{
scanf("%d%d%d", &start, &end, &times);
Gragh_Edge[j].next = head[start]; Gragh_Edge[j].to = end; Gragh_Edge[j].cost = -times;//单向边,负值,只要覆盖掉之前的正值就可以了
head[start] = j;
}
if (Search_Spfa(Node_sum, Path_sum, holes_sum))
printf("YES\n");
else printf("NO\n");
}
}
return ;
} bool Search_Spfa(const int Node_sum, const int Path_sum, const int holes_sum)
{
Position top, bot, out_node; for (int i = ; i <= Node_sum; i++)
{
if (known[i]) continue;
top = bot = ;
known[i] = ; que[bot++] = i; while (top != bot)
{
out_node = que[top++];
known[out_node] = ;
used[out_node] = ;//出队了就标记为0
out[out_node]++;
if (out[out_node] > Node_sum) return true; for (int k = head[out_node]; k != -; k = Gragh_Edge[k].next)//此点的邻接边全部找出来
{
if (dp_edge[Gragh_Edge[k].to] > dp_edge[out_node] + Gragh_Edge[k].cost)
{
dp_edge[Gragh_Edge[k].to] = dp_edge[out_node] + Gragh_Edge[k].cost;
if (!used[Gragh_Edge[k].to])//to不在队列内
{
used[Gragh_Edge[k].to] = ;
que[bot++] = Gragh_Edge[k].to;
}
}
}
}
}
return false;
}

  速度快了一倍

ShortestPath:Wormholes(POJ 3259)的更多相关文章

  1. (最短路 spfa)Wormholes -- poj -- 3259

    http://poj.org/problem?id=3259 Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions ...

  2. Wormholes POJ 3259(SPFA判负环)

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  3. Wormholes - poj 3259 (Bellman-Ford算法)

      Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 34934   Accepted: 12752 Description W ...

  4. kuangbin专题专题四 Wormholes POJ - 3259

    题目链接:https://vjudge.net/problem/POJ-3259 思路:求有无负环,起点随意选就可以,因为目的只是找出有没有负环,有了负环就可以让时间一直回退,那么一定能回到当初,这里 ...

  5. Wormholes POJ - 3259 spfa判断负环

    //判断负环 dist初始化为正无穷 //正环 负无穷 #include<iostream> #include<cstring> #include<queue> # ...

  6. ACM: POJ 3259 Wormholes - SPFA负环判定

     POJ 3259 Wormholes Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu   ...

  7. 最短路(Bellman_Ford) POJ 3259 Wormholes

    题目传送门 /* 题意:一张有双方向连通和单方向连通的图,单方向的是负权值,问是否能回到过去(权值和为负) Bellman_Ford:循环n-1次松弛操作,再判断是否存在负权回路(因为如果有会一直减下 ...

  8. poj - 3259 Wormholes (bellman-ford算法求最短路)

    http://poj.org/problem?id=3259 农夫john发现了一些虫洞,虫洞是一种在你到达虫洞之前把你送回目的地的一种方式,FJ的每个农场,由n块土地(编号为1-n),M 条路,和W ...

  9. POJ 3259 Wormholes(最短路,判断有没有负环回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 24249   Accepted: 8652 Descri ...

随机推荐

  1. Oracle查看锁表

     查看锁表进程SQL语句1: select sess.sid,     sess.serial#,     lo.oracle_username,     lo.os_user_name,     a ...

  2. NOI题库--图论 宗教信仰

    1526:宗教信仰 总时间限制: 5000ms 内存限制: 65536kB 描述 世界上有许多宗教,你感兴趣的是你学校里的同学信仰多少种宗教. 你的学校有n名学生(0 < n <= 500 ...

  3. HDU1698 Just a Hook

    Description In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of t ...

  4. Android 使用Parcelable序列化对象

    转:http://ipjmc.iteye.com/blog/1314145       Android序列化对象主要有两种方法,实现Serializable接口.或者实现Parcelable接口.实现 ...

  5. 宿主机为linux、windows分别实现VMware三种方式上网(转)

    一.VMware三种方式工作原理1 Host-only连接方式  让虚机具有与宿主机不同的各自独立IP地址,但与宿主机位于不同网段,同时为宿主主机新增一个IP地址,且保证该IP地址与各虚机IP地址位于 ...

  6. Android Studio 的安装和配置篇(Windows篇)

    上一篇介绍完了Android Studio,这一篇就专门来讲讲怎么安装配置的吧. 其实好多人都卡到安装配置这一步,想当初我也是,万恶的XX防火墙,导致下载Android Studio 的gradle异 ...

  7. cdrecord光盘烧录工具

    我们是透过 cdrecord 这个命令来进行文字介面的烧录行为,这个命令常见的选项有底下数个: [root@www ~]# cdrecord -scanbus dev=ATA <==查询烧录机位 ...

  8. 模板插件aTpl

    摘要: 前面给大家分享了一款js模板插件,后来经过完善推荐给大家.该插件支持ie5+,chrome等浏览器以及移动端浏览器,支持for和if语法,以及表达式. 项目地址:https://github. ...

  9. __set(),__get() 魔术方法示例

    <?php class Ren{private $name;private $age;private $sex;function __set($name,$value){ if($name == ...

  10. cocos基础教程(5)数据结构介绍之cocos2d::Value

    1.概述 cocos2d::Valie 是一个包含了很多原生类型(int,float,double,bool,unsigned char,char* 和 std::string)外加 std::vec ...