ShortestPath:Wormholes(POJ 3259)
题目大意:就是这个农夫的田里有一些虫洞,田有很多个点,点与点之间会存在路,走过路需要时间,并且这些点存在虫洞,可以使农夫的时间退回到时间之前,问你农夫是否真的能回到时间之前?
读完题:这一题就是很明显了,就是要你找负值圈嘛!立马上Bellman_Ford算法
#include <iostream>
#include <functional>
#include <algorithm>
#include <queue>
#define MAX_N 501 using namespace std; typedef struct edge_
{
int cost;
int from;
int to;
}Edge;
static Edge Gragh_Edge[MAX_N *MAX_N];
static int dp_edge[MAX_N*MAX_N * + ]; bool Search_Bellman_Ford(const int,const int,const int); int main(void)
{
int Farm_sum, Path_sum, Node_sum, holes_sum, start, end, times;
while (~scanf("%d", &Farm_sum))
{
for (int i = ; i < Farm_sum; i++)
{
scanf("%d%d%d", &Node_sum, &Path_sum, &holes_sum);
for (int j = ; j < * Path_sum; j += )
{
scanf("%d%d%d", &start, &end, ×);
//双向边
Gragh_Edge[j].from = start; Gragh_Edge[j].to = end; Gragh_Edge[j].cost = times;
Gragh_Edge[j + ].from = end; Gragh_Edge[j + ].to = start; Gragh_Edge[j + ].cost = times;
}
for (int j = * Path_sum; j < holes_sum + * Path_sum; j++)
{
scanf("%d%d%d", &start, &end, ×);
Gragh_Edge[j].from = start; Gragh_Edge[j].to = end; Gragh_Edge[j].cost = -times;//单向边,负值,只要覆盖掉之前的正值就可以了
}
if (Search_Bellman_Ford(Node_sum, Path_sum,holes_sum))
printf("YES\n");
else printf("NO\n");
}
}
return ;
} bool Search_Bellman_Ford(const int Node_sum, const int Path_sum, const int holes_sum)
{
int paths = Path_sum * + holes_sum;
memset(dp_edge, , sizeof(dp_edge)); for (int i = ; i < Node_sum; i++)
for (int j = ; j < paths; j++)
{
Edge e = Gragh_Edge[j];
if (dp_edge[e.from] + e.cost < dp_edge[e.to])
{
dp_edge[e.to] = dp_edge[e.from] + e.cost;
if (i == Node_sum - ) return true;
}
}
return false;
}
结果很高兴地1A了
当然,这个时间有点慢,我们可以使用SPFA算法优化他
不过在这之前我们有必要搞清楚什么是SPFA算法,其实这个算法是Bellman_Ford的优化,BF这个算法的缺点在于他一定要把所有的点都扫描n-1次才能确定是否有负值圈,这就造成了低效,而我们知道,其实我们没有必要等所有的节点都到i=n-1的层面,因为如果图不存在负值圈,那么Bellman_Ford以及Dijkstra算法肯定不会经过一个顶点两次,如果存在负圈,那么肯定至少存在一个节点,经过n次以上,那么我们完全可以利用这个性质,在扫n-1次前就找到这个节点,而SPFA算法就是利用这个原理。
SPFA算法有点像BFS算法,他是充分利用点的关系来找最短路的,而且这个算法还支持负值圈(当然这个算法找正值的最短路径不及Dijkstra那么快),复杂度是O(EV)(没有负值圈的时候),他像BFS一样,不断地把邻接节点入队,然后出队,利用一个used域,我们就可以找到那些不在队中的节点,如果不存在负值圈,那么这些节点就不会经过两次,最终这个算法会以队列为空结束,如果存在负值圈,那么我们需要其他判断方法,这个方法就是判断一个节点是否被进入V次以上(之前说过的性质)。
其他的也像BF算法一样,还是维护一个dp数组来确定是否更新就可以了
SPFA因为要对邻接点做处理,所以如果能存边,那就最好了,所以推荐用邻接表,另外ACM因为还是以速度为主,大量的申请内存会导致效率下降,所以如果要维护邻接表,最好还是用向前边的方法维护,就是维护一个head数组,head数组指向第一条边,接下来边指向其他的边就可以了!
另外这一题因为我们不知道是不是联通,用SPFA还是要稍微判断一下节点有没有经过的问题,没有经过我们就重新设立start节点(这一题讨论版很多人都没考虑到这一点,那是运气好,这一题是联通的,so)
#include <iostream>
#include <functional>
#include <algorithm>
#define MAX_N 501 using namespace std; typedef struct edge_
{
int cost;
int next;
int to;
}Edge;
typedef int Queue, Position;
static Edge Gragh_Edge[MAX_N *MAX_N + ];
static Position head[MAX_N];//用邻接表去存图,这个是节点头
static bool used[MAX_N];//SPFA算法要用到的标记域
static bool known[MAX_N];//判断图是否联通的关键
static int out[MAX_N];//看点出列了多少次
static int dp_edge[MAX_N];//dp数组记录到该点的最短距离
Queue que[MAX_N *MAX_N];//队列 bool Search_Spfa(const int, const int, const int);
void Renew(void); int main(void)
{
int Farm_sum, Path_sum, Node_sum, holes_sum, start, end, times;
while (~scanf("%d", &Farm_sum))
{
for (int i = ; i < Farm_sum; i++)
{
memset(head, -, sizeof(head));
memset(used, , sizeof(used));
memset(known, , sizeof(known));
memset(out, , sizeof(out));
memset(dp_edge, , sizeof(dp_edge));
scanf("%d%d%d", &Node_sum, &Path_sum, &holes_sum);
for (int j = ; j < * Path_sum; j += )
{
scanf("%d%d%d", &start, &end, ×);
//双向边
Gragh_Edge[j].next = head[start]; Gragh_Edge[j].to = end; Gragh_Edge[j].cost = times;
head[start] = j;
Gragh_Edge[j + ].next = head[end]; Gragh_Edge[j + ].to = start; Gragh_Edge[j + ].cost = times;
head[end] = j + ;
}
for (int j = * Path_sum; j < holes_sum + * Path_sum; j++)
{
scanf("%d%d%d", &start, &end, ×);
Gragh_Edge[j].next = head[start]; Gragh_Edge[j].to = end; Gragh_Edge[j].cost = -times;//单向边,负值,只要覆盖掉之前的正值就可以了
head[start] = j;
}
if (Search_Spfa(Node_sum, Path_sum, holes_sum))
printf("YES\n");
else printf("NO\n");
}
}
return ;
} bool Search_Spfa(const int Node_sum, const int Path_sum, const int holes_sum)
{
Position top, bot, out_node; for (int i = ; i <= Node_sum; i++)
{
if (known[i]) continue;
top = bot = ;
known[i] = ; que[bot++] = i; while (top != bot)
{
out_node = que[top++];
known[out_node] = ;
used[out_node] = ;//出队了就标记为0
out[out_node]++;
if (out[out_node] > Node_sum) return true; for (int k = head[out_node]; k != -; k = Gragh_Edge[k].next)//此点的邻接边全部找出来
{
if (dp_edge[Gragh_Edge[k].to] > dp_edge[out_node] + Gragh_Edge[k].cost)
{
dp_edge[Gragh_Edge[k].to] = dp_edge[out_node] + Gragh_Edge[k].cost;
if (!used[Gragh_Edge[k].to])//to不在队列内
{
used[Gragh_Edge[k].to] = ;
que[bot++] = Gragh_Edge[k].to;
}
}
}
}
}
return false;
}
速度快了一倍
ShortestPath:Wormholes(POJ 3259)的更多相关文章
- (最短路 spfa)Wormholes -- poj -- 3259
http://poj.org/problem?id=3259 Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions ...
- Wormholes POJ 3259(SPFA判负环)
Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...
- Wormholes - poj 3259 (Bellman-Ford算法)
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34934 Accepted: 12752 Description W ...
- kuangbin专题专题四 Wormholes POJ - 3259
题目链接:https://vjudge.net/problem/POJ-3259 思路:求有无负环,起点随意选就可以,因为目的只是找出有没有负环,有了负环就可以让时间一直回退,那么一定能回到当初,这里 ...
- Wormholes POJ - 3259 spfa判断负环
//判断负环 dist初始化为正无穷 //正环 负无穷 #include<iostream> #include<cstring> #include<queue> # ...
- ACM: POJ 3259 Wormholes - SPFA负环判定
POJ 3259 Wormholes Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu ...
- 最短路(Bellman_Ford) POJ 3259 Wormholes
题目传送门 /* 题意:一张有双方向连通和单方向连通的图,单方向的是负权值,问是否能回到过去(权值和为负) Bellman_Ford:循环n-1次松弛操作,再判断是否存在负权回路(因为如果有会一直减下 ...
- poj - 3259 Wormholes (bellman-ford算法求最短路)
http://poj.org/problem?id=3259 农夫john发现了一些虫洞,虫洞是一种在你到达虫洞之前把你送回目的地的一种方式,FJ的每个农场,由n块土地(编号为1-n),M 条路,和W ...
- POJ 3259 Wormholes(最短路,判断有没有负环回路)
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 24249 Accepted: 8652 Descri ...
随机推荐
- Yii2的view需要链接跳转
添加 use yii\helpers\Url; view中的连接 <?= Url::toRoute('post/index');?>//post为你的当前控制器名,index为view模版
- 洛谷P1203 [USACO1.1]坏掉的项链Broken Necklace
题目描述 你有一条由N个红色的,白色的,或蓝色的珠子组成的项链(3<=N<=350),珠子是随意安排的. 这里是 n=29 的二个例子: 第一和第二个珠子在图片中已经被作记号. 图片 A ...
- IOS开发 证书总结
开发者证书 ------>> 首先你必须获得apple开发者证书,上图这个文件就是apple开发者证书,只要有apple的开发者账号就可以下载到,此证书可以直接到 developer ...
- maven运行javaWeb项目
首先从svn下载下来的maven项目,需要点击项目,然后import--->Existing Maven Projects->全选之后点next就转换成功了,然后 run as--> ...
- java分页
package entity; public class Page { //记录当前页的状态信息 private int num; //当前页号,采用自然数计数 1,2,3,... private i ...
- java连接mysql(一)
import java.sql.*; public class MysqlTest { public static void main(String[] args) throws SQLExcepti ...
- c++实现gray code(格雷码)
今天别人问的一道题,强调用分治法实现 =.= 百度了一下格雷码,然后写了一下. 关于格雷码大家看百度的吧,特别详细,贴个图: 代码如下(header_file.h是我自己写的一个头文件,包括常见的ve ...
- JavaScript模块化学习基础
http://www.ruanyifeng.com/blog/2012/10/javascript_module.html 一.原始写法 模块就是实现特定功能的一组方法. 不同函数简单放在一起就算一个 ...
- JS 下拉菜单
HTML <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...
- Java Socket发送与接收HTTP消息简单实现
在上次Java Socket现实简单的HTTP服务我 们实现了简单的HTTP服务,它可以用来模拟HTTP服务,用它可以截获HTTP请求的原始码流,让我们很清楚的了解到我们向服务发的HTTP消息的结 构 ...