分类 kNN
#coding=utf-8
from numpy import *
import operator
from os import listdir
import matplotlib
import matplotlib.pyplot as plt #从文件当中读取内容,保存到矩阵当中
#因为文件当中有两部分内容,一部分是三个原因,另一部分是结果
def file2matrix(filename):
fr=open(filename)
numberOfLines=len(fr.readlines())#计算文件的行数
returnMat=zeros((numberOfLines,3))#生成一个零矩阵
classLabelVector=[]#生成一个序列,主要操作是切片
fr=open(filename)
index=0
for line in fr.readlines():
line=line.strip()#读取一行的内容
listFromLine=line.split('\t')#将line分割成3个列
returnMat[index,:]=listFromLine[0:3]#取前三个到切片放到第index行
classLabelVector.append(int(listFromLine[-1]))#取最后一个追加到classLabelVector
index+=1#index自加
return returnMat,classLabelVector #归一化数据
def autoNorm(dataSet):
#获取每一列的最小值,也就是说结果是一个3维的数组,数组的元素
#是每一列到最小值
#如果0改为1,那么获取到的是每一行的最小值,也就是一个数组
minVals=dataSet.min(0)
maxVals=dataSet.max(0)#获取每一列的最大值
ranges=maxVals-minVals
normDataSet=zeros(shape(dataSet))#生成一个零矩阵 #shape,显示一个矩阵的行列,如果没有[0],那么输出
#(1000,3)也就是1000行,3列,
# [0]表示第一个元素(行),[1]表示第二个元素(列)
m=dataSet.shape[0]#获取行的行的数然后复制给m
#tile是一个复制函数,将minVals复制
#行的方向上复制m次你,列的方向上复制1次
normDataSet=dataSet-tile(minVals,(m,1))
normDataSet=normDataSet/tile(ranges,(m,1))
return normDataSet,ranges,minVals #绘图
def draw():
fig=plt.figure()
ax=fig.add_subplot(111)
datingDataMat,datingLabels= file2matrix('datingTestSet.txt')
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],
15.0*array(datingLabels),15.0*array(datingLabels))
plt.show() #分类
def classify0(inX, dataSet, labels, k):
#获取到dataSet的行数量
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
#排序,但是矩阵并不修改,只是获取到修改后的下标
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
#获取到分类
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] #识别过程
def datingClassTest():
hoRatio=0.10
#从文件当中读取txt文件,转化为矩阵
datingDataMat,datingLabels=file2matrix('datingTestSet.txt')
normMat,ranges,minVals=autoNorm(datingDataMat) m=normMat.shape[0]
numTestVecs=int(m*hoRatio)
errorCount=0.0
#从1到100
for i in range(numTestVecs):
#第一个参数是待分类到矩阵
#normMat[i,:]代表一个行,也就是矩阵的第i行的一位矩阵
#normMat[numTestVecs:m,:]使用从100到1000行的矩阵去分类
#datingLabels[numTestVecs:m]使用从100到1000行的结果去分类
#3代表kNN当中的k
classfierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],
datingLabels[numTestVecs:m],3)
print "机器人认为的结果是%d,正确的答案是:%d"%(classfierResult,datingLabels[i])
if(classfierResult!=datingLabels[i]):
errorCount+=1.0
print "错误律是:%f" %(errorCount/float(numTestVecs)) datingClassTest() """
最初错误原因
dataSet=file2matrix('datingTestSet.txt')
print dataSet#有两个返回值,会把后一个返回值追加到dataSet上面,构成元祖
print "*****************************"
datingDataMat,datingLabels=file2matrix('datingTestSet.txt')
print datingDataMat
print "*****************************"
print datingLabels
"""
分类 kNN的更多相关文章
- 机器学习算法 - 最近邻规则分类KNN
上节介绍了机器学习的决策树算法,它属于分类算法,本节我们介绍机器学习的另外一种分类算法:最近邻规则分类KNN,书名为k-近邻算法. 它的工作原理是:将预测的目标数据分别跟样本进行比较,得到一组距离的数 ...
- 最邻近规则分类KNN算法
例子: 求未知电影属于什么类型: 算法介绍: 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已 ...
- 机器学习--最邻近规则分类KNN算法
理论学习: 3. 算法详述 3.1 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选 ...
- 2019-08-01【机器学习】有监督学习之分类 KNN,决策树,Nbayes算法实例 (人体运动状态信息评级)
样本: 使用的算法: 代码: import numpy as np import pandas as pd import datetime from sklearn.impute import Sim ...
- python实现简单分类knn算法
原理:计算当前点(无label,一般为测试集)和其他每个点(有label,一般为训练集)的距离并升序排序,选取k个最小距离的点,根据这k个点对应的类别进行投票,票数最多的类别的即为该点所对应的类别.代 ...
- JAVA实现KNN分类
转载请注明出处:http://blog.csdn.net/xiaojimanman/article/details/51064307 http://www.llwjy.com/blogdetail/f ...
- 室内定位系列(三)——位置指纹法的实现(KNN)
位置指纹法中最常用的算法是k最近邻(kNN):选取与当前RSS最邻近的k个指纹的位置估计当前位置,简单直观有效.本文介绍kNN用于定位的基本原理与具体实现(matlab.python). 基本原理 位 ...
- 人体姿态的相似性评价基于OpenCV实现最近邻分类KNN K-Nearest Neighbors
最近学习了人体姿态的相似性评价.需要用到KNN来统计与当前姿态相似的k个姿态信息. 假设我们已经有了矩阵W和给定的测试样本姿态Xi,需要寻找与Xi相似的几个姿态,来估计当前Xi的姿态标签. //knn ...
- 视觉机器学习------KNN学习
KNN(K-Nearest Neighbor algorithm, K最近邻方法)是一种统计分类器,属于惰性学习. 基本思想:输入没有标签即未经分类的新数据,首先提取新数据的特征并与测试集中的每一个数 ...
随机推荐
- unity3d中资源文件从MAX或者MAYA中导出的注意事项
原地址:http://blog.sina.com.cn/s/blog_6ad33d3501011ekx.html 之前在项目中,没有怎么接触过美术的软件(之前的美术团队很犀利,被他们宠坏了).在自己公 ...
- 修改 ~/.bashrc显示 git 当前分支
vim ~/.bashrc # git branch show configuration PS1="\\w:\$(git branch 2>/dev/null | grep '^*' ...
- PHP 上传文件和读取文件崎岖路
今天php上传文件和读取文件没有搞出来,全靠后来大神来帮忙,总结一下:主要涉及到一下几个方面,在ubuntu下mkdir文件夹的时候要注意权限问题,一般情况下php是以一个较低的权限去执行的,所以如果 ...
- PHP使用CURL上传|下载文件
CURL下载文件 /** * @param string $img_url 下载文件地址 * @param string $save_path 下载文件保存目录 * @param string $fi ...
- Android通过URL加载网络图片
public static Bitmap getBitmap(String path) throws IOException { URL url = new URL(path); HttpURLCon ...
- 调用python 报R6034 错误
R6034 指的是:"An application has made an attempt to load the C runtime library incorrectly. Please ...
- poj2485 Highways
Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has no public h ...
- [另开新坑] 算导v3 #26 最大流 翻译
26 最大流 就像我们可以对一个路网构建一个有向图求最短路一样,我们也可以将一个有向图看成是一个"流量网络(flow network)",用它来回答关于流的问题. Just as ...
- GIT的标准文档 使用和服务介绍
http://www.kancloud.cn/kancloud/how-to-use-github/42192 1. 探索GitHub 熟悉Git的人几乎都知道并喜欢GitHub,反过来GitHub也 ...
- datetime中strftime和strptime用法
from datetime import * format = "%Y-%m-%d %H:%M:%S" a=datetime.now() day=a.day b=a.replace ...