C++处理一个动态规划的问题
嗯哼,别人问的问题,看的我也头晕,百度了一下动态规划,看了看才想起来该怎么做,今天写了写代码,实现了~
要求是递归,动态规划,想了想这种方法也是最简单的~
所谓动态规划:把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解。动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。(摘自百科)(时间复杂度为一个多项式的复杂度)
背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。
题目如截图:
解题思路:
n代表面值
n为1,直接看是否可以整除;
n>1,看在没有第n个面值的时候多少,然后看有1个、2个....j/n个面值为n的时候需要几枚硬币,取最小值
将这些直接存在数组中,然后去数组里的最小值
代码:
#include"header_file.h"
using namespace std; int coin_num(vector<int> T,int i,int j)
{
if(i==)
{
if(j%T[]==)
{
return j/T[];
}
else
{
return ;
}
}
else
{
int min;
min=coin_num(T,i-,j);
int temp;
temp=j/T[i-];
for(int m=;m<=temp;m++)
{
if(min>(m+coin_num(T,i-,j-m*T[i-])))
min=m+coin_num(T,i-,j-m*T[i-]); }
return min;
}
} vector<int> all_num(vector<int> T,int j)
{
vector<int> v;
for(int i=;i<T.size();i++)
v.push_back(coin_num(T,i+,j));
// for(int i=0;i<T.size();i++) //use for test
// cout<<v[i]<<" ";
//v.push_back(coin_num(T,i+1,j));
return v;
} int find_min(vector<int> v)
{
int min=;
for(int i=;i<v.size();i++)
{
if(v[min]>v[i])
min=i;
}
return v[min];
} int main(void)
{
int n;
cout<<"input n:";
cin>>n; vector<int> T;
for(int i=;i<n;i++)
{
int temp;
cin>>temp;
T.push_back(temp);
} int j;
cout<<"input j:";
cin>>j; vector<int> v;
v=all_num(T,j);
int min;
min=find_min(v);
cout<<"min:"<<min<<endl;
}
C++处理一个动态规划的问题的更多相关文章
- 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵
题目描述: 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵(矩阵中元素个数为矩阵面积) 输入: 每个案例第一行三个正整数N,M<=100,表示矩阵大小,和一个整数K 接下 ...
- [算法]动态规划(Dynamic programming)
转载请注明原创:http://www.cnblogs.com/StartoverX/p/4603173.html Dynamic Programming的Programming指的不是程序而是一种表格 ...
- 算法导论——lec 11 动态规划及应用
和分治法一样,动态规划也是通过组合子问题的解而解决整个问题的.分治法是指将问题划分为一个一个独立的子问题,递归地求解各个子问题然后合并子问题的解而得到原问题的解.与此不同,动态规划适用于子问题不是相互 ...
- UVa Live 3942 Remember the Word - Hash - 动态规划
题目传送门 高速路出口I 高速路出口II 题目大意 给定若干种短串,和文本串$S$,问有多少种方式可以将短串拼成长串. 显然,你需要一个动态规划. 用$f[i]$表示拼出串$S$前$i$个字符的方案数 ...
- 动态规划-独特的子字符串存在于Wraparound String总个数 Unique Substrings in Wraparound String
2018-09-01 22:50:59 问题描述: 问题求解: 如果单纯的遍历判断,那么如何去重保证unique是一个很困难的事情,事实上最初我就困在了这个点上. 后来发现是一个动态规划的问题,可以将 ...
- 动态规划——最长公共子序列LCS及模板
摘自 https://www.cnblogs.com/hapjin/p/5572483.html 这位大佬写的对理解DP也很有帮助,我就直接摘抄过来了,代码部分来自我做过的题 一,问题描述 给定两个字 ...
- 动态规划小结 - 一维动态规划 - 时间复杂度 O(n),题 [LeetCode] Jump Game,Decode Ways
引言 一维动态规划根据转移方程,复杂度一般有两种情况. func(i) 只和 func(i-1)有关,时间复杂度是O(n),这种情况下空间复杂度往往可以优化为O(1) func(i) 和 func(1 ...
- 动态规划:HDU1176-免费馅饼
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- Gym 100829S_surf 动态规划的优化
题目大意是,非你若干个任务,任务分别对应开始时间.预期收益.持续时间三项指标,让你从中选择一个受益最大的方案(没有开始时间相同的任务). 于是,标准状态转移方程应当为,设DP[K]为选择了前K个任务的 ...
随机推荐
- leetcode database题目
LeetCode有10道SQL的题目,最近学习SQL语言,顺便刷题强化一下, 说实话刷完SQL学习指南这本书,不是很难,上面的例子 跟语法规则我都能理解透, 实际中来做一些比较难的业务逻辑题,却一下子 ...
- javascript替换手机号中间4位
// 匹配手机号首尾,以类似“123****8901”的形式输出 '12345678901'.replace(/(\d{3})\d{4}(\d{4})/, '$1****$2'); 此段正则匹配字符串 ...
- 视频会议的3G智能手机移植技术
现今的视频会议系统已经兼容3G手机等移动终端设备,而3G智能手机使用的操作系统一般与PC的操作系统不一样,其开发环境一般都在PC上进行,通过模拟器在PC上进行手机系统的应用程序开发,而在这些操作系统上 ...
- 检查c# 内存泄漏
c# 内存泄漏检查心得 系统环境 windows 7 x64 检查工具:ANTS Memory Profiler 7 或者 .NET Memory Profiler 4.0 开发的软件为winform ...
- [转]SIFT特征提取分析
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points) ...
- python 转 exe -- py2exe库实录
本文基于windows 7 + python 3.4 把python程序打包成exe,比较好用的库是py2exe 其操作步骤是: --> 编写python程序 --> 再额外编写一个导入了 ...
- [CareerCup] 2.2 Kth to Last Element of Linked List 链表的倒数第k个元素
2.2 Implement an algorithm to find the kth to last element of a singly linked list. 这道题让我们求链表中倒数第k个元 ...
- [CareerCup] 8.6 Jigsaw Puzzle 拼图游戏
8.6 Implement a jigsaw puzzle. Design the data structures and explain an algorithm to solve the puzz ...
- LeetCode:Gray Code(格雷码)
题目链接 The gray code is a binary numeral system where two successive values differ in only one bit. Gi ...
- 从Swift学习iOS开发的路线指引
本文主要是楼主近段时间从Swift语法开始自学iOS开发的流程总结,PS 一个前提,楼主的生存环境中买不到一本iOS开发中文教程,所以基本都是百度摸索出来的 >_< 主要流程 学习Swif ...