1045: [HAOI2008] 糖果传递

Time Limit: 10 Sec Memory Limit: 162 MB

Submit: 2975 Solved: 1327

[Submit][Status][Discuss]

Description

有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。

Input

小朋友个数n 下面n行 ai

Output

求使所有人获得均等糖果的最小代价。

Sample Input

4

1

2

5

4

Sample Output

4

HINT

100% n<=987654321

(这个数据范围加了特技,真实范围n<=1000000,Duang)

数学题,可以说是**均分纸牌**的环状问题
首先数组get【i】表示第i个小朋友从第i+1个小朋友那里得到的糖果,可正可负
所以也可以表示第i+1个小朋友给第i个小朋友的糖果,即第i+1个小朋友失去的数量

所以我们不难得出:

candy【i】+get【i】-get【i-1】=pj(平均)

这一步并不足以求解

所以移项可得:

get【i】=pj-candy【i】+get【i-1】

上述式子可以推出get的值,那么问题在于从哪里开始最小

问题为圆环,最小想到距离,距离想到中位!!

于是…..A之

代码精炼至极:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std; #define maxn 1000002
long long candy[maxn]={0};
long long get[maxn]={0}; int main()
{
int n;
long long sum=0,pj=0;
long long ans=0;
scanf("%d",&n);
for (long long i=1; i<=n; i++)
{
scanf("%d",&candy[i]);
sum+=candy[i];
}
pj=sum/n;
for (long long i=1; i<=n; i++)
get[i]=get[i-1]+pj-candy[i];
sort(get+1,get+n+1);
long long mid=get[(1+n)/2];
for (long long i=1; i<=n; i++)
ans+=fabs(mid-get[i]);
printf("%lld",ans);
return 0;
}

BZOJ-1045 糖果传递 数学+递推的更多相关文章

  1. bzoj 1045糖果传递 数学贪心

    首先我们假设平均数为ave 那么对于第1个人,我们假设他给第N个人K个糖果,第2个人给1,第3个人给2,第n个人给第n-1个人 那么对于第1个人给完n,第2个人给完1,第一个人不会再改变糖果数了,所以 ...

  2. [BZOJ]1045 糖果传递(HAOI2008)

    放一道数学题. Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n<=1000000,表示 ...

  3. BZOJ 1045 糖果传递(思维)

    设第i个人给了第i+1个人mi个糖果(可以为负),因为最后每个人的糖果都会变成sum/n. 可以得到方程组 mi-mi+1=a[i+1]-sum/n.(1<=i<=n). 把方程组化为mn ...

  4. BZOJ 1045 糖果传递

    奇怪的式子.最后发现取中位数. #include<iostream> #include<cstdio> #include<cstring> #include< ...

  5. BZOJ 1045: [HAOI2008] 糖果传递 数学

    1045: [HAOI2008] 糖果传递 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1045 Description 有n个小朋友坐 ...

  6. B1045 糖果传递 数学

    糖果传递,一开始就想到了n^2的模拟贪心算法,但是一看,数据范围太大,好像只有O(N)能过...没啥方法,只好看题解,之后发现,woc,还有这种操作? 这个题直接可以用数学证明... 证明如下: 首先 ...

  7. UVa 10943 (数学 递推) How do you add?

    将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...

  8. 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度

    1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...

  9. ACM学习历程——ZOJ 3822 Domination (2014牡丹江区域赛 D题)(概率,数学递推)

    Description Edward is the headmaster of Marjar University. He is enthusiastic about chess and often ...

随机推荐

  1. 最严谨的校验email地址的正则表达式

    通用 (?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*|"(?:[\x01-\x08\x0 ...

  2. Android Studio运行程序出现Session ‘app’: Error Launching activity 解决办法

    session "app":error launching activity 一下两种方法,可以轻松解决: 1. 2.把复选框去除:  

  3. bundle是什么?

    bundle就是一个数据对象,像Map,HashMap一样key-value键值对的方式存放数据.在android中用于应用程序之间数据传输,不过是要靠对象使用的 谢谢,又知道了一种在Activity ...

  4. Android--使用VideoView播放视频

    承香墨影 Android--使用VideoView播放视频   前言   之前有讲过如何使用SurfaceView配合MediaPlayer播放视频,其实Android还为开发人员提供了另外一种更简单 ...

  5. $apply方法的作用

    $apply方法是用来触发脏检查,它在控制器里监听一个变量,每当这个变量的值改变的时候,它会去与最初的值做一次比较,然后HTML页面就会及时更新该变量的值(将最新的值赋值到html页面的view层或M ...

  6. 梳理git分支管理策略

    如果你严肃对待编程,就必定会使用"版本管理系统"(Version Control System). 眼下最流行的"版本管理系统",非Git莫属. 相比同类软件, ...

  7. 【转】【WPF】WriteableBitmap应用及图片数据格式转换

    使用 WriteableBitmap 类基于每个框架来更新和呈现位图.这对于生成算法内容(如分形图像)和数据可视化(如音乐可视化工具)很有用. WriteableBitmap 类使用两个缓冲区.“后台 ...

  8. 在PLSQL中不能使用中文作为查询条件查询数据

    解决方法:  1.在oracle服务端的注册表中找到oracle-->key_oradb11g_home1,在右侧找到NLS_LANG,将其数值数据改为SIMPLIFIED CHINESE_CH ...

  9. U3D assetbundle加载

    using UnityEngine; using System.Collections; public class testLoadFromAB : MonoBehaviour { IEnumerat ...

  10. C# log4net 不输出日志

    一个新项目,直接用了一些之前的代码,突然跟踪不到日志了.检查发现了原因,特在此记录. log4net的配置文件log4net_config.xml <?xml version="1.0 ...