随机增量算法(a randomized incremental algorithm)

#define sqr(x) ((x)*(x))
#define EPS 1e-4 struct P{
double x, y;
P(double x, double y):x(x),y(y){}
P(P &a, P &b):x(b.x-a.x),y(b.y-a.y){}
P(){}
P mid(P &a){
return P((a.x+x)/, (a.y+y)/);
}
double cross(P &a){
return x*a.y-y*a.x;
}
double len2(){
return sqr(x)+sqr(y);
}
double dis(P &a){
return sqrt(sqr(x-a.x)+sqr(y-a.y));
}
void print(){
printf("%f %f\n", x, y);
}
}; struct Disc{
P o;
double r;
bool cover(P &a){
return r-o.dis(a) >= -EPS;
}
Disc(){}
Disc(P &o, double r):o(o),r(r){}
Disc(P &a, P &b):o(a.mid(b)), r(a.dis(b)/){}
Disc(P &a, P &b, P &c){
double t1=b.len2()-a.len2();
double t2=c.len2()-a.len2();
P p1(a, b), p2(a, c);
double t3=p1.cross(p2)*;
P p3(t1, p1.y), p4(t2, p2.y);
P p5(p1.x, t1), p6(p2.x, t2);
o=P(p3.cross(p4)/t3, p5.cross(p6)/t3);
r=o.dis(a);
}
}; Disc MinDisc(vector<P> &p){
if(p.size()<=) return Disc();
random_shuffle(p.begin(), p.end());
Disc d(p[], p[]);
for(int i=; i<p.size(); i++)
if(!d.cover(p[i])){
d=Disc(p[], p[i]);
for(int j=; j<i; j++)
if(!d.cover(p[j])){
d=Disc(p[i], p[j]);
for(int k=; k<j; k++)
if(!d.cover(p[k]))
d=Disc(p[i], p[j], p[k]);
}
}
return d;
}

最小圆覆盖(Smallest Enclosing Discs)的更多相关文章

  1. 【BZOJ-1336&1337】Alie最小圆覆盖 最小圆覆盖(随机增量法)

    1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1573   ...

  2. Bzoj 1336&1337 Alien最小圆覆盖

    1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 1473  ...

  3. hdu3007Buried memory(最小圆覆盖)

    链接 普通的暴力复杂度达到O(n^4),对于这题肯定是不行的. 解法:随机增量算法 参考http://www.2cto.com/kf/201208/149602.html algorithm:A.令C ...

  4. [BZOJ 3564] [SHOI2014] 信号增幅仪 【最小圆覆盖】

    题目链接:BZOJ - 3564 题目分析 求最小椭圆覆盖,题目给定了椭圆的长轴与 x 轴正方向的夹角,给定了椭圆长轴与短轴的比值. 那么先将所有点旋转一个角度,使椭圆长轴与 x 轴平行,再将所有点的 ...

  5. [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】

    题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...

  6. 最小圆覆盖 hdu 3007

    今天学习了一下最小圆覆盖, 看了一下午都没看懂, 晚上慢慢的摸索这代码,接合着别人的讲解, 画着图跟着代码一步一步的走着,竟然有些理解了. 最小圆覆盖: 给定n个点, 求出半径最小的圆可以把这些点全部 ...

  7. bzoj1336: [Balkan2002]Alien最小圆覆盖

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1336 1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 ...

  8. 【做题】POI2011R1 - Plot——最小圆覆盖&倍增

    原文链接 https://www.cnblogs.com/cly-none/p/loj2159.html 题意:给出\(n\)个点,你需要按编号将其划分成不超过\(m\)段连续的区间,使得所有每个区间 ...

  9. 【BZOJ2823】[AHOI2012]信号塔(最小圆覆盖)

    [BZOJ2823][AHOI2012]信号塔(最小圆覆盖) 题面 BZOJ 洛谷 相同的题: BZOJ1 BZOJ2 洛谷 题解 模板题... #include<iostream> #i ...

随机推荐

  1. man 在线手册

    http://man7.org/linux/man-pages/man3/fwrite.3.html

  2. Javascript 中的 in, hasOwnProperty, delete, for/in

    in 运算符 判断对象是否拥有某一属性只要对象拥有该属性,就会返回true,否则false var point = { x:1, y:1 };alert( 'x' in point );  //tru ...

  3. 关于第一个Java应用

    一.创建Java源文件 Java应用由一个或多个扩展名为".java"的文件构成,这些文件被称为Java源文件,从编译的角度,则被称为编译单元(Compilation Unit). ...

  4. FusionCharts V3图表导出图片和PDF属性说明(转)

    百闻不如一见,狠狠点击,快快下载:(演示文档有错误,不提供下载了.待新的演示文档出来.) 许多朋友说上面的DEMO用不了.fusioncharts官方的演示非常不错,就是来不及整理,各位大侠们可以研究 ...

  5. JayProxy的设置

    1. mac http://pac.jayproxy.com/jayproxy/jayproxy.pac 2. wifi http://pac.jayproxy.com/jayproxy/m.pac ...

  6. 区块链技术(一):Truffle开发入门

    以太坊是区块链开发领域最好的编程平台,而truffle是以太坊(Ethereum)最受欢迎的一个开发框架,这是我们第一篇区块链技术文章介绍truffle的原因,实战是最重要的事情,这篇文章不讲原理,只 ...

  7. SQL Server 维护计划实现数据库备份(Step by Step)

    转自:http://www.cnblogs.com/gaizai/archive/2011/11/18/2254445.html 一.前言 SQL Server 备份和还原全攻略,里面包括了通过SSM ...

  8. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  9. [CareerCup] 5.4 Explain Expression ((n & (n-1)) == 0) 解释表达式

    5.4 Explain what the following code does: ((n & (n-1)) == 0). 这道题让我们解释一个表达式((n & (n-1)) == 0 ...

  10. LeetCode 334 Increasing Triplet

    这个题是说看一个没有排序的数组里面有没有三个递增的子序列,也即: Return true if there exists i, j, k such that arr[i] < arr[j] &l ...