BFOIndividual.py

 import numpy as np
import ObjFunction class BFOIndividual: '''
individual of baterial clony foraging algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for baterial clony foraging algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
# self.fitness = ObjFunction.GrieFunc(
# self.vardim, self.chrom, self.bound)
s1 = 0.
s2 = 1.
for i in range(1, self.vardim + 1):
s1 = s1 + self.chrom[i - 1] ** 2
s2 = s2 * np.cos(self.chrom[i - 1] / np.sqrt(i))
y = (1. / 4000.) * s1 - s2 + 1
self.fitness = y

BFO.py

 import numpy as np
from BFOIndividual import BFOIndividual
import random
import copy
import matplotlib.pyplot as plt
import math class BacterialForagingOptimization: '''
The class for baterial foraging optimization algorithm
''' def __init__(self, sizepop, vardim, bound, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
param: algorithm required parameters, it is a list which is consisting of [Ned, Nre, Nc, Ns, C, ped, d_attract, w_attract, d_repellant, w_repellant]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.population = []
self.bestPopulation = []
self.accuFitness = np.zeros(self.sizepop)
self.fitness = np.zeros(self.sizepop)
self.params = params
self.trace = np.zeros(
(self.params[0] * self.params[1] * self.params[2], 2)) def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = BFOIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def sortPopulation(self):
'''
sort population according descending order
'''
sortedIdx = np.argsort(self.accuFitness)
newpop = []
newFitness = np.zeros(self.sizepop)
for i in xrange(0, self.sizepop):
ind = self.population[sortedIdx[i]]
newpop.append(ind)
self.fitness[i] = ind.fitness
self.population = newpop def solve(self):
'''
evolution process of baterial clony foraging algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
bestIndex = np.argmin(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex]) for i in xrange(0, self.params[0]):
for j in xrange(0, self.params[1]):
for k in xrange(0, self.params[2]):
self.t += 1
self.chemotaxls()
self.evaluate()
best = np.min(self.fitness)
bestIndex = np.argmin(self.fitness)
if best < self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = self.best.fitness
self.trace[self.t - 1, 1] = self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
self.reproduction()
self.eliminationAndDispersal() print("Optimal function value is: %f; " %
self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def chemotaxls(self):
'''
chemotaxls behavior of baterials
'''
for i in xrange(0, self.sizepop):
tmpInd = copy.deepcopy(self.population[i])
self.fitness[i] += self.communication(tmpInd)
Jlast = self.fitness[i]
rnd = np.random.uniform(low=-1, high=1.0, size=self.vardim)
phi = rnd / np.linalg.norm(rnd)
tmpInd.chrom += self.params[4] * phi
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
m = 0
while m < self.params[3]:
if tmpInd.fitness < Jlast:
Jlast = tmpInd.fitness
self.population[i] = copy.deepcopy(tmpInd)
# print m, Jlast
tmpInd.fitness += self.communication(tmpInd)
tmpInd.chrom += self.params[4] * phi
for k in xrange(0, self.vardim):
if tmpInd.chrom[k] < self.bound[0, k]:
tmpInd.chrom[k] = self.bound[0, k]
if tmpInd.chrom[k] > self.bound[1, k]:
tmpInd.chrom[k] = self.bound[1, k]
tmpInd.calculateFitness()
m += 1
else:
m = self.params[3]
self.fitness[i] = Jlast
self.accuFitness[i] += Jlast def communication(self, ind):
'''
cell to cell communication
'''
Jcc = 0.0
term1 = 0.0
term2 = 0.0
for j in xrange(0, self.sizepop):
term = 0.0
for k in xrange(0, self.vardim):
term += (ind.chrom[k] -
self.population[j].chrom[k]) ** 2
term1 -= self.params[6] * np.exp(-1 * self.params[7] * term)
term2 += self.params[8] * np.exp(-1 * self.params[9] * term)
Jcc = term1 + term2 return Jcc def reproduction(self):
'''
reproduction of baterials
'''
self.sortPopulation()
newpop = []
for i in xrange(0, self.sizepop / 2):
newpop.append(self.population[i])
for i in xrange(self.sizepop / 2, self.sizepop):
self.population[i] = newpop[i - self.sizepop / 2] def eliminationAndDispersal(self):
'''
elimination and dispersal of baterials
'''
for i in xrange(0, self.sizepop):
rnd = random.random()
if rnd < self.params[5]:
self.population[i].generate() def printResult(self):
'''
plot the result of the baterial clony foraging algorithm
'''
x = np.arange(0, self.t)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title(
"Baterial clony foraging algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
bfo = BFO(60, 25, bound, [2, 2, 50, 4, 50, 0.25, 0.1, 0.2, 0.1, 10])
bfo.solve()

ObjFunction见简单遗传算法-python实现

细菌觅食算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. Floyd判最小环算法模板

    算法思想:如果存在最小环,会在编号最大的点u更新最短路径前找到这个环,发现的方法是,更新最短路径前,遍历i,j点对,一定会发现某对i到j的最短路径长度dis[i][j]+mp[j][u]+mp[u][ ...

  2. JavaWeb学习之Servlet(三)----Servlet的映射匹配问题、线程安全问题

    [声明] 欢迎转载,但请保留文章原始出处→_→ 文章来源:http://www.cnblogs.com/smyhvae/p/4140529.html 一.Servlet映射匹配问题: 在第一篇文章中的 ...

  3. 如何使用AutoIT完成单机测试

    下面我们来介绍如何使用AutoIT完成单机程序的自动化测试.使用AutoIT完成桌面应用程序的自动化测试,最重要的是找到识别GUI对象的方法,然后调用AutoIT函数来操纵它或读取它的属性值,并与正确 ...

  4. 为什么需要DTO(数据传输对象)

    DTO即数据传输对象.之前不明白有些框架中为什么要专门定义DTO来绑定表现层中的数据,为什么不能直接用实体模型呢,有了DTO同时还要维护DTO与Model之间的映射关系,多麻烦. 然后看了这篇文章中的 ...

  5. 以下是关于ASP.NET中保存各种信息的对象的比较,理解这些对象的原理,对制作完善的程序来说是相当有必要的(摘至互联网,并非原创--xukunping)

    在ASP.NET中,有很多种保存信息的对象.例如:APPlication,Session,Cookie,ViewState和Cache等,那么它们有什么区别呢?每一种对象应用的环境是什么?    为了 ...

  6. OpenCV人脸检测demo--facedetect

    &1 问题来源 在运行官网的facedetect这个demo的时候,总是不会出来result的图形,电脑右下角提示的错误是“显示器驱动程序已停止响应,而且已恢复 windows 8(R)”. ...

  7. Code First开发系列之管理并发和事务(转)

    转自:http://www.cnblogs.com/farb/p/ConcurrencyAndTransctionManagement.html 返回<8天掌握EF的Code First开发&g ...

  8. 安装Ubuntu 16.04后要做的事

    Ubuntu 16.04发布了,带来了很多新特性,同样也依然带着很多不习惯的东西,所以装完系统后还要进行一系列的优化. 1.删除libreoffice libreoffice虽然是开源的,但是Java ...

  9. Linux第二次报告20135221

    学习计时:共xxx小时 读书: 代码: 作业: 博客: 一.学习目标 1. 熟悉Linux系统下的开发环境   2. 熟悉vi的基本操作   3. 熟悉gcc编译器的基本原理   4. 熟练使用gcc ...

  10. ios UILocalNotification的使用

    iOS下的Notification的使用 Notification是智能手机应用编程中非常常用的一种传递信息的机制,而且可以非常好的节省资源,不用消耗资源来不停地检查信息状态(Pooling),在iO ...